Every functor $F\colon \mathcal{C}\to \mathcal{D}$ defines a natural transformation1

called the natural transformation associated to $F$, consisting of the collection
\[ \webleft\{ F^{\dagger }_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \webright\} _{\webleft (A,B\webright )\in \text{Obj}\webleft (\mathcal{C}^{\mathsf{op}}\times \mathcal{C}\webright )} \]

with

\[ F^{\dagger }_{A,B} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}F_{A,B}. \]


1This is the $1$-categorical version of Chapter 2: Constructions With Sets, of .

The naturality condition for $F^{\dagger }$ is the requirement that for each morphism

\[ \webleft (\phi ,\psi \webright ) \colon \webleft (X,Y\webright ) \to \webleft (A,B\webright ) \]

of $\mathcal{C}^{\mathsf{op}}\times \mathcal{C}$, the diagram

acting on elements as

commutes, which follows from the functoriality of $F$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: