• The functor $F$ is dominant (Definition 9.7.1.1.1), i.e. every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$:
    • For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
      • An object $A$ of $\mathcal{C}$;
      • A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;
      • A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;
      such that $r\circ s=\text{id}_{B}$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: