A functor $F\colon \mathcal{C}\to \mathcal{D}$ is dominant if every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$, i.e.:

  • For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
    • An object $A$ of $\mathcal{C}$;
    • A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;
    • A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;
    such that we have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: