Let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors and let $I\colon \mathcal{X}\to \mathcal{C}$ be a functor.
-
Interaction With Right Whiskering. If $I$ is full and dominant, then the map
\[ -\mathbin {\star }\text{id}_{I} \colon \text{Nat}\webleft (F,G\webright )\to \text{Nat}\webleft (F\circ I,G\circ I\webright ) \]
is a bijection.
- Interaction With Adjunctions. Let $\webleft (F,G\webright )\colon \mathcal{C}\mathbin {\rightleftarrows }\mathcal{D}$ be an adjunction.