9.7.1 Dominant Functors

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is dominant if every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$, i.e.:

  • For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
    • An object $A$ of $\mathcal{C}$;
    • A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;
    • A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;
    such that we have

Let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors and let $I\colon \mathcal{X}\to \mathcal{C}$ be a functor.

  1. Interaction With Right Whiskering. If $I$ is full and dominant, then the map
    \[ -\mathbin {\star }\text{id}_{I} \colon \text{Nat}\webleft (F,G\webright )\to \text{Nat}\webleft (F\circ I,G\circ I\webright ) \]

    is a bijection.

  2. Interaction With Adjunctions. Let $\webleft (F,G\webright )\colon \mathcal{C}\mathbin {\rightleftarrows }\mathcal{D}$ be an adjunction.
    1. If $F$ is dominant, then $G$ is faithful.
    2. The following conditions are equivalent:
      1. The functor $G$ is full.
      2. The restriction
        \[ \left.G\right\vert _{\mathrm{Im}_{F}}\colon \mathrm{Im}\webleft (F\webright )\to \mathcal{C} \]

        of $G$ to $\mathrm{Im}\webleft (F\webright )$ is full.

Is there a characterisation of functors $F\colon \mathcal{C}\to \mathcal{D}$ such that:

  1. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
    \[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is dominant?

  2. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor
    \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

    is dominant?

This question also appears as [MO 468125].


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: