Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
- Characterisations. The following conditions are equivalent:
- Interaction With Fully Faithfulness. Every fully faithful functor is conservative.
-
Interaction With Precomposition. The following conditions are equivalent:
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is conservative.
- The equivalent conditions of Item 5 of Proposition 9.6.1.1.2 are satisfied.
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor