Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.
- Interaction With Composition. If $F$ and $G$ are faithful, then so is $G\circ F$.
-
Interaction With Postcomposition. The following conditions are equivalent:
- The functor $F\colon \mathcal{C}\to \mathcal{D}$ is faithful.
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor
\[ F_{*} \colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright ) \to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]
is faithful.
- The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a representably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 11: Graphs, Definition 11.1.1.1.1.
-
Interaction With Precomposition I. Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
-
If $F$ is faithful, then the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
can fail to be faithful.
-
Conversely, if the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is faithful, then $F$ can fail to be faithful.
-
If $F$ is faithful, then the precomposition functor
-
Interaction With Precomposition II. If $F$ is essentially surjective, then the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is faithful.
-
Interaction With Precomposition III. The following conditions are equivalent:
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is faithful.
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is conservative.
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
\[ F^{*} \colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright ) \to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is monadic.
- The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a corepresentably faithful morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 11: Graphs, Definition 11.2.1.1.1.
-
The components
\[ \eta _{G}\colon G\Longrightarrow \text{Ran}_{F}\webleft (G\circ F\webright ) \]
of the unit
\[ \eta \colon \text{id}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )}\Longrightarrow \text{Ran}_{F}\circ F^{*} \]of the adjunction $F^{*}\dashv \text{Ran}_{F}$ are all monomorphisms.
-
The components
\[ \epsilon _{G}\colon \text{Lan}_{F}\webleft (G\circ F\webright )\Longrightarrow G \]
of the counit
\[ \epsilon \colon \text{Lan}_{F}\circ F^{*}\Longrightarrow \text{id}_{\mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )} \]of the adjunction $\text{Lan}_{F}\dashv F^{*}$ are all epimorphisms.
-
The functor $F$ is dominant (Definition 9.7.1.1.1), i.e. every object of $\mathcal{D}$ is a retract of some object in $\mathrm{Im}\webleft (F\webright )$:
- For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
- An object $A$ of $\mathcal{C}$;
- A morphism $s\colon B\to F\webleft (A\webright )$ of $\mathcal{D}$;
- A morphism $r\colon F\webleft (A\webright )\to B$ of $\mathcal{D}$;
- For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
-
For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor