Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.
-
Characterisations. If $\mathcal{C}$ and $\mathcal{D}$ are small1 then the following conditions are equivalent:
- The functor $F$ is an equivalence of categories.
- The functor $F$ is fully faithful and essentially surjective.
-
The induced functor
\[ \left.F\right\vert _{\mathsf{Sk}\webleft (\mathcal{C}\webright )}\colon \mathsf{Sk}\webleft (\mathcal{C}\webright )\to \mathsf{Sk}\webleft (\mathcal{D}\webright ) \]
is an isomorphism of categories.
-
For each $X\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is an equivalence of categories.
-
For each $X\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor
\[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]
is an equivalence of categories.
-
Two-Out-of-Three. Let
be a diagram in $\mathsf{Cats}$. If two out of the three functors among $F$, $G$, and $G\circ F$ are equivalences of categories, then so is the third.
-
Stability Under Composition. Let
be a diagram in $\mathsf{Cats}$. If $\webleft (F,G\webright )$ and $\webleft (F',G'\webright )$ are equivalences of categories, then so is their composite $\webleft (F'\circ F,G'\circ G\webright )$.
- Equivalences vs.Adjoint Equivalences. Every equivalence of categories can be promoted to an adjoint equivalence.3
-
Interaction With Groupoids. If $\mathcal{C}$ and $\mathcal{D}$ are groupoids, then the following conditions are equivalent:
- The functor $F$ is an equivalence of groupoids.
-
The following conditions are satisfied:
-
The functor $F$ induces a bijection
\[ \pi _{0}\webleft (F\webright )\colon \pi _{0}\webleft (\mathcal{C}\webright )\to \pi _{0}\webleft (\mathcal{D}\webright ) \]
of sets.
-
For each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, the induced map
\[ F_{x,x}\colon \mathrm{Aut}_{\mathcal{C}}\webleft (A\webright )\to \mathrm{Aut}_{\mathcal{D}}\webleft (F_{A}\webright ) \]
is an isomorphism of groups.
-
The functor $F$ induces a bijection
MSE 1465107
]. MO 119454
].
In Univalent Foundations, this is true without requiring neither the axiom of choice nor the law of excluded middle.