The identity natural transformation $\text{id}_{F}\colon F\Rightarrow F$ of $F$ is the natural transformation consisting of the collection

\[ \webleft\{ \webleft (\text{id}_{F}\webright )_{A}\colon F\webleft (A\webright )\to F\webleft (A\webright )\webright\} _{A\in \text{Obj}\webleft (\mathcal{C}\webright )} \]

defined by

\[ \webleft (\text{id}_{F}\webright )_{A}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{F\webleft (A\webright )} \]

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$.

The naturality condition for $\text{id}_{F}$ is the requirement that, for each morphism $f\colon A\to B$ of $\mathcal{C}$, the diagram

commutes. This follows from unitality of the composition of $\mathcal{D}$, as we have

\begin{align*} F\webleft (f\webright )\circ \text{id}_{F\webleft (A\webright )} & = F\webleft (f\webright )\\ & = \text{id}_{F\webleft (B\webright )}\circ F\webleft (f\webright ),\\ \end{align*}

where we have applied unitality twice.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: