Let $A$ and $B$ be monoids and let $f,g\colon A\rightrightarrows B$ be morphisms of monoids. Applying the delooping construction of , we obtain functors $\mathsf{B}{f},\mathsf{B}{g}\colon \mathsf{B}{A}\rightrightarrows \mathsf{B}{B}$. We then have
Unwinding the definitions in this case, we see that a transformation $\alpha $ from $\mathsf{B}{f}$ to $\mathsf{B}{g}$ consists of a collection
of morphisms of $\mathsf{B}{B}$ indexed by $\text{Obj}\webleft (\mathsf{B}{A}\webright )$. Since $\text{Obj}\webleft (\mathsf{B}{A}\webright )=\text{pt}$ and the morphisms of $\mathsf{B}{B}$ are precisely the elements of $B$, it follows that $\alpha $ corresponds precisely to the data of an element $b\in B$. Now, a transformation $\webleft [b\webright ]\colon \mathsf{B}{f}\Rightarrow \mathsf{B}{g}$ is natural precisely if, for each $a\in \textup{Hom}_{\mathsf{B}{A}}\webleft (\bullet ,\bullet \webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A$, the diagram
commutes. Unwinding the definitions, we see that this diagram is given by
and hence corresponds precisely to the condition $g\webleft (a\webright )b=bf\webleft (a\webright )$.