8.8.2 Natural Transformations

Let $\mathcal{C}$ and $\mathcal{D}$ be categories and $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors.

A natural transformation $\alpha \colon F\Longrightarrow G$ from $F$ to $G$ is a transformation

\[ \webleft\{ \alpha _{A}\colon F\webleft (A\webright )\to G\webleft (A\webright )\webright\} _{A\in \text{Obj}\webleft (\mathcal{C}\webright )} \]

from $F$ to $G$ such that, for each morphism $f\colon A\to B$ of $\mathcal{C}$, the diagram

commutes.[1]

We denote natural transformations in diagrams as

We write $\text{Nat}\webleft (F,G\webright )$ for the set of natural transformations from $F$ to $G$.

The identity natural transformation $\text{id}_{F}\colon F\Longrightarrow F$ of $F$ is the natural transformation consisting of the collection

\[ \webleft\{ \text{id}_{F\webleft (A\webright )}\colon F\webleft (A\webright )\to F\webleft (A\webright )\webright\} _{A\in \text{Obj}\webleft (\mathcal{C}\webright )}. \]

The naturality condition for $\text{id}_{F}$ is the requirement that, for each morphism $f\colon A\to B$ of $\mathcal{C}$, the diagram

commutes, which follows from unitality of the composition of $\mathcal{C}$.

Two natural transformations $\alpha ,\beta \colon F\Longrightarrow G$ are equal if we have

\[ \alpha _{A}=\beta _{A} \]

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$.


Footnotes

[1] Further Terminology: The morphism $\alpha _{A}\colon F_{A}\to G_{A}$ is called the component of $\alpha $ at $A$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: