Two natural transformations $\alpha ,\beta \colon F\Rightarrow G$ are equal if we have
\[ \alpha _{A}=\beta _{A} \]
for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$.
Here's a breakdown of the differences between each PDF style:
Style | Class | Font | Theorem Environments |
---|---|---|---|
Style 1 | book |
Alegreya Sans | tcbthm |
Style 2 | book |
Alegreya Sans | amsthm |
Style 3 | book |
Arno* | amsthm |
Style 4 | book |
Computer Modern | amsthm |
*To be replaced with Linus Romer's Elemaints when it is released.
Two natural transformations $\alpha ,\beta \colon F\Rightarrow G$ are equal if we have
for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$.