The vertical composition of two natural transformations $\alpha \colon F\Longrightarrow G$ and $\beta \colon G\Longrightarrow H$ as in the diagram

is the natural transformation $\beta \circ \alpha \colon F\Longrightarrow H$ consisting of the collection

\[ \webleft\{ \webleft (\beta \circ \alpha \webright )_{A} \colon F\webleft (A\webright ) \to H\webleft (A\webright ) \webright\} _{A\in \text{Obj}\webleft (\mathcal{C}\webright )} \]

with

\[ \webleft (\beta \circ \alpha \webright )_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta _{A}\circ \alpha _{A} \]

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$.

The naturality condition for $\beta \circ \alpha $ is the requirement that the boundary of the diagram

commutes. Since

  1. Subdiagram (1) commutes by the naturality of $\alpha $.
  2. Subdiagram (2) commutes by the naturality of $\beta $.

so does the boundary diagram. Hence $\beta \circ \alpha $ is a natural transformation.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: