Let $\mathcal{C}$, $\mathcal{D}$, and $\mathcal{E}$ be categories.

  1. Functionality. The assignment $\webleft (\beta ,\alpha \webright )\mapsto \beta \circ \alpha $ defines a function
    \[ \circ _{F,G,H}\colon \text{Nat}\webleft (G,H\webright )\times \text{Nat}\webleft (F,G\webright )\to \text{Nat}\webleft (F,H\webright ). \]
  2. Associativity. Let $F,G,H,K\colon \mathcal{C}\overset {\rightrightarrows }{\rightrightarrows }\mathcal{D}$ be functors. The diagram
    commutes, i.e. given natural transformations
    \[ F\mathbin {\overset {\alpha }{\Longrightarrow }}G\mathbin {\overset {\beta }{\Longrightarrow }}H\mathbin {\overset {\gamma }{\Longrightarrow }}K, \]

    we have

    \[ \webleft (\gamma \circ \beta \webright )\circ \alpha =\gamma \circ \webleft (\beta \circ \alpha \webright ). \]
  3. Unitality. Let $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors.
    1. Left Unitality. The diagram

      commutes, i.e. given a natural transformation $\alpha \colon F\Longrightarrow G$, we have

      \[ \text{id}_{G}\circ \alpha =\alpha . \]
    2. Right Unitality. The diagram

      commutes, i.e. given a natural transformation $\alpha \colon F\Longrightarrow G$, we have

      \[ \alpha \circ \text{id}_{F}=\alpha . \]
  4. Middle Four Exchange. Let $F_{1},F_{2},F_{3}\colon \mathcal{C}\to \mathcal{D}$ and $G_{1},G_{2},G_{3}\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram
    commutes, i.e. given a diagram

    in $\mathsf{Cats}_{\mathsf{2}}$, we have

    \[ \webleft (\beta '\mathbin {\star }\alpha '\webright )\circ \webleft (\beta \mathbin {\star }\alpha \webright )=\webleft (\beta '\circ \beta \webright )\mathbin {\star }\webleft (\alpha '\circ \alpha \webright ). \]

Item 1: Functionality
Clear.
Item 2: Associativity
Indeed, we have

\begin{align*} \webleft (\webleft (\gamma \circ \beta \webright )\circ \alpha \webright )_{A} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\gamma \circ \beta \webright )_{A}\circ \alpha _{A}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\gamma _{A}\circ \beta _{A}\webright )\circ \alpha _{A}\\ & = \gamma _{A}\circ \webleft (\beta _{A}\circ \alpha _{A}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\gamma _{A}\circ \webleft (\beta \circ \alpha \webright )_{A}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\gamma \circ \webleft (\beta \circ \alpha \webright )\webright )_{A} \end{align*}

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, showing the desired equality.

Item 3: Unitality
We have
\begin{align*} \webleft (\text{id}_{G}\circ \alpha \webright )_{A} & = \text{id}_{G}\circ \alpha _{A}\\ & = \alpha _{A},\\ \webleft (\alpha \circ \text{id}_{F}\webright )_{A} & = \alpha _{A}\circ \text{id}_{F}\\ & = \alpha _{A} \end{align*}

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, showing the desired equality.

Item 4: Middle Four Exchange
This is proved in Item 4 of Proposition 9.9.5.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: