Let $\mathcal{C}$, $\mathcal{D}$, and $\mathcal{E}$ be categories.

  1. Functionality. The assignment $\webleft (\beta ,\alpha \webright )\mapsto \beta \mathbin {\star }\alpha $ defines a function
    \[ \mathbin {\star }_{\webleft (F,G\webright ),\webleft (H,K\webright )}\colon \text{Nat}\webleft (H,K\webright )\times \text{Nat}\webleft (F,G\webright )\to \text{Nat}\webleft (H\circ F,K\circ G\webright ). \]
  2. Associativity. Let

    be a diagram in $\mathsf{Cats}_{\mathsf{2}}$. The diagram

    commutes, i.e. given natural transformations

    we have

    \[ \webleft (\gamma \mathbin {\star }\beta \webright )\mathbin {\star }\alpha =\gamma \mathbin {\star }\webleft (\beta \mathbin {\star }\alpha \webright ). \]
  3. Interaction With Identities. Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram

    commutes, i.e. we have

    \[ \text{id}_{G}\mathbin {\star }\text{id}_{F}=\text{id}_{G\circ F}. \]
  4. Middle Four Exchange. Let $F_{1},F_{2},F_{3}\colon \mathcal{C}\to \mathcal{D}$ and $G_{1},G_{2},G_{3}\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram
    commutes, i.e. given a diagram

    in $\mathsf{Cats}_{\mathsf{2}}$, we have

    \[ \webleft (\beta '\mathbin {\star }\alpha '\webright )\circ \webleft (\beta \mathbin {\star }\alpha \webright )=\webleft (\beta '\circ \beta \webright )\mathbin {\star }\webleft (\alpha '\circ \alpha \webright ). \]

Item 1: Functionality
Clear.
Item 2: Associativity
Omitted.
Item 3: Interaction With Identities
We have
\begin{align*} \webleft (\text{id}_{G}\mathbin {\star }\text{id}_{F}\webright )_{A} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\text{id}_{G}\webright )_{F_{A}}\circ G_{\webleft (\text{id}_{F}\webright )_{A}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{G_{F_{A}}}\circ G_{\text{id}_{F_{A}}}\\ & = \text{id}_{G_{F_{A}}}\circ \text{id}_{G_{F_{A}}}\\ & = \text{id}_{G_{F_{A}}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\text{id}_{G\circ F}\webright )_{A} \end{align*}

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, showing the desired equality.

Item 4: Middle Four Exchange
Let $A\in \text{Obj}\webleft (\mathcal{C}\webright )$ and consider the diagram
The top composition
is given by $\webleft (\webleft (\beta '\circ \beta \webright )\mathbin {\star }\webleft (\alpha '\circ \alpha \webright )\webright )_{A}$, while the bottom composition
is given by $\webleft (\webleft (\beta '\mathbin {\star }\alpha '\webright )\circ \webleft (\beta \mathbin {\star }\alpha \webright )\webright )_{A}$. Now, Subdiagram (1) corresponds to the naturality condition
for $\beta \colon G_{1}\Longrightarrow G_{2}$ at $\alpha '_{A}\colon F_{2}\webleft (A\webright )\to F_{3}\webleft (A\webright )$, and thus commutes. Thus we have
\[ \webleft (\webleft (\beta '\circ \beta \webright )\mathbin {\star }\webleft (\alpha '\circ \alpha \webright )\webright )_{A} = \webleft (\webleft (\beta '\mathbin {\star }\alpha '\webright )\circ \webleft (\beta \mathbin {\star }\alpha \webright )\webright )_{A} \]

for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$ and therefore

\[ \webleft (\beta '\mathbin {\star }\alpha '\webright )\circ \webleft (\beta \mathbin {\star }\alpha \webright )=\webleft (\beta '\circ \beta \webright )\mathbin {\star }\webleft (\alpha '\circ \alpha \webright ). \]

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: