Let $\mathcal{C}$, $\mathcal{D}$, and $\mathcal{E}$ be categories.
-
Functionality. The assignment $\webleft (\beta ,\alpha \webright )\mapsto \beta \mathbin {\star }\alpha $ defines a function
\[ \mathbin {\star }_{\webleft (F,G\webright ),\webleft (H,K\webright )}\colon \text{Nat}\webleft (H,K\webright )\times \text{Nat}\webleft (F,G\webright )\to \text{Nat}\webleft (H\circ F,K\circ G\webright ). \]
-
Associativity. Let
be a diagram in $\mathsf{Cats}_{\mathsf{2}}$. The diagram
commutes, i.e. given natural transformations
we have
\[ \webleft (\gamma \mathbin {\star }\beta \webright )\mathbin {\star }\alpha =\gamma \mathbin {\star }\webleft (\beta \mathbin {\star }\alpha \webright ). \]
-
Interaction With Identities. Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram
commutes, i.e. we have
\[ \text{id}_{G}\mathbin {\star }\text{id}_{F}=\text{id}_{G\circ F}. \]
-
Middle Four Exchange. Let $F_{1},F_{2},F_{3}\colon \mathcal{C}\to \mathcal{D}$ and $G_{1},G_{2},G_{3}\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram commutes, i.e. given a diagram
in $\mathsf{Cats}_{\mathsf{2}}$, we have
\[ \webleft (\beta '\mathbin {\star }\alpha '\webright )\circ \webleft (\beta \mathbin {\star }\alpha \webright )=\webleft (\beta '\circ \beta \webright )\mathbin {\star }\webleft (\alpha '\circ \alpha \webright ). \]