9.10.3 The $2$-Category of Categories, Functors, and Natural Transformations

The $2$-category of (small) categories, functors, and natural transformations is the $2$-category $\mathsf{Cats}_{\mathsf{2}}$ where

  • Objects. The objects of $\mathsf{Cats}_{\mathsf{2}}$ are small categories.
  • $\mathsf{Hom}$-Categories. For each $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}_{\mathsf{2}}\webright )$, we have

    \[ \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{C},\mathcal{D}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright ). \]

  • Identities. For each $\mathcal{C}\in \text{Obj}\webleft (\mathsf{Cats}_{\mathsf{2}}\webright )$, the unit functor

    \[ \mathbb {1}^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C}} \colon \mathsf{pt}\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{C}\webright ) \]

    of $\mathsf{Cats}_{\mathsf{2}}$ at $\mathcal{C}$ is the functor picking the identity functor $\text{id}_{\mathcal{C}}\colon \mathcal{C}\to \mathcal{C}$ of $\mathcal{C}$.

  • Composition. For each $\mathcal{C},\mathcal{D},\mathcal{E}\in \text{Obj}\webleft (\mathsf{Cats}_{\mathsf{2}}\webright )$, the composition bifunctor

    \[ \circ ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C},\mathcal{D},\mathcal{E}} \colon \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{D},\mathcal{E}\webright ) \times \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{C},\mathcal{D}\webright ) \to \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{C},\mathcal{E}\webright ) \]

    of $\mathsf{Cats}_{\mathsf{2}}$ at $\webleft (\mathcal{C},\mathcal{D},\mathcal{E}\webright )$ is the functor where

    • Action on Objects. For each object $\webleft (G,F\webright )\in \text{Obj}\webleft (\mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{D},\mathcal{E}\webright )\times \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{C},\mathcal{D}\webright )\webright )$, we have

      \[ \circ ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C},\mathcal{D},\mathcal{E}}\webleft (G,F\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G\circ F. \]

    • Action on Morphisms. For each morphism $\webleft (\beta ,\alpha \webright )\colon \webleft (K,H\webright )\Longrightarrow \webleft (G,F\webright )$ of $\mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{D},\mathcal{E}\webright )\times \mathsf{Hom}_{\mathsf{Cats}_{\mathsf{2}}}\webleft (\mathcal{C},\mathcal{D}\webright )$, we have

      \[ \circ ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathcal{C},\mathcal{D},\mathcal{E}}\webleft (\beta ,\alpha \webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\beta \mathbin {\star }\alpha , \]

      where $\beta \mathbin {\star }\alpha $ is the horizontal composition of $\alpha $ and $\beta $ of Definition 9.9.5.1.1.

Let $\mathcal{C}$ be a category.

  1. 2-Categorical Co/Completeness. The 2-category $\mathsf{Cats}_{\mathsf{2}}$ is complete and cocomplete as a 2-category, having all 2-categorical and bicategorical co/limits.

Item 1: Co/Completeness
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: