In detail, $f$ is corepresentably full if, for each $X\in \text{Obj}\webleft (\mathcal{C}\webright )$ and each $2$-morphism

of $\mathcal{C}$, there exists a $2$-morphism
of $\mathcal{C}$ such that we have an equality
of pasting diagrams in $\mathcal{C}$, i.e. such that we have

\[ \beta =\alpha \mathbin {\star }\text{id}_{f}. \]

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: