11.2.2 Corepresentably Full Morphisms
Let $\mathcal{C}$ be a bicategory.
A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is corepresentably full if, for each $X\in \text{Obj}\webleft (\mathcal{C}\webright )$, the functor
\[ f^{*}\colon \mathsf{Hom}_{\mathcal{C}}\webleft (B,X\webright )\to \mathsf{Hom}_{\mathcal{C}}\webleft (A,X\webright ) \]
given by precomposition by $f$ is full.
Here are some examples of corepresentably full morphisms.
-
Corepresentably Full Morphisms in $\mathsf{Cats}_{\mathsf{2}}$. The corepresentably full morphisms in $\mathsf{Cats}_{\mathsf{2}}$ are characterised in Chapter 9: Categories, Item 7 of Proposition 9.6.2.1.2.
-
Corepresentably Full Morphisms in $\textbf{Rel}$. The corepresentably full morphisms in $\textbf{Rel}$ are characterised in Chapter 6: Relations, Item 2 of Proposition 6.3.10.1.1.