Set Theory:
- https://math.stackexchange.com/questions/200389/show-that-the-set-of-all-finite-subsets-of-mathbbn-is-countable
- https://mathoverflow.net/a/479528
- https://www.maths.ed.ac.uk/~tl/ast/ast.pdf
Pointed sets:
-
Universal property of the smash product of pointed sets:
-
Record the weaker version of Chapter 5: Tensor Products of Pointed Sets, Theorem 5.5.10.1.1 saying that $\wedge $ is uniquely determined by those requirements:
- State as is
- Restate as saying that a “moduli category” of those is contractible/equivalent to $\mathsf{pt}$
-
Study the “moduli category” of monoidal structures on $\mathsf{Sets}_{*}$ having $\wedge $ and $S^{0}$; is it contractible?
- Lax vs. oplax vs. etc. is a thing here.
- Do the same for $\webleft (\mathsf{Sets},\times ,\text{pt}\webright )$
-
Record the weaker version of Chapter 5: Tensor Products of Pointed Sets, Theorem 5.5.10.1.1 saying that $\wedge $ is uniquely determined by those requirements:
- Universal properties (plural!) of the left tensor product of pointed sets
- Universal properties (plural!) of the right tensor product of pointed sets
Relations:
-
Alternative compositions for $\textbf{Rel}$:
-
Figure which magma structures on $\{ \mathsf{t},\mathsf{f}\} $ induce associative and unital compositions on $\mathrm{Rel}$.
-
One that does is
\[ \webleft (S\circ R\webright )^{c}_{a}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{b\in B}S^{c}_{b}\mathbin {\text{xor}}R^{b}_{a} \]
with unit given by $\Delta _{\mathtt{f}}$.
- Another is apartness composition
-
One that does is
-
Figure what are the 2-categorical properties (internal monomorphisms, internal adjunctions, monads, etc.) of $\textbf{Rel}$ equipped with alternative compositions such as the apartness composition of the xor composition defined above
- In particular: Apartness composition, categorical properties of $\textbf{Rel}$ with apartness, and apartness relations.
-
Figure which magma structures on $\{ \mathsf{t},\mathsf{f}\} $ induce associative and unital compositions on $\mathrm{Rel}$.
- Characterise the 2-categorical monomorphisms and epimorphisms in $\textbf{Rel}$.
- Co/limits in $\textbf{Rel}$.
-
Codensity monad $\text{Ran}_{J}\webleft (J\webright )$ of a relation (What about $\text{Rift}_{J}\webleft (J\webright )$?)
- Density comonad $\text{Lan}_{J}\webleft (J\webright )$ of a relation when it exists (what about $\text{Lift}_{J}\webleft (J\webright )$?)
- Explore relative co/monads in $\textbf{Rel}$, defined to be co/monoids in $\mathbf{Rel}\webleft (A,B\webright )$ with its left/right skew monoidal structures of Chapter 6: Relations, Section 6.4 and Section 6.5
- Fibrations in $\textbf{Rel}$, like discrete fibrations and Street fibrations
-
Consider adding the sections
- The Monoidal Bicategory of Relations
- The Monoidal Double Category of Relations
- internal relations, https://ncatlab.org/nlab/show/internal+relation
Spans:
- Spans: study certain compositions of spans like composing $B\xleftarrow {f}A=A$ and $A=A\xleftarrow {g}B$ into a span $B\xleftarrow {f}A\xleftarrow {g}B$
- Comparison double functor from Span to Rel and vice versa
- Apartness composition for spans and alternate compositions for spans in general
-
non-Cartesian analogue of spans
- View spans as morphisms $S\to A\times B$ and consider instead morphisms $S\to A\otimes _{\mathcal{C}}B$
- Record the universal property of the bicategory of spans of https://ncatlab.org/nlab/show/span
- https://ncatlab.org/nlab/show/span+trace
- Cospans.
- Multispans.
Un/Straightening for Indexed and Fibred Sets:
- Analogue of adjoints for Grothendieck construction for indexed and fibred sets
- Write proper sections on straightening for lax functors from Sets to Rel or Span (displayed sets)
- co/units for un/straightening adjunction
Categories:
- https://en.wikipedia.org/wiki/Category_algebra
- simple objects
- https://mathoverflow.net/questions/442212/properties-of-categorical-zeta-function
- Polynomial functors, https://ncatlab.org/nlab/show/polynomial+functor, https://arxiv.org/abs/2312.00990
- https://ncatlab.org/nlab/show/simple+object
- https://mathoverflow.net/questions/442212/properties-of-categorical-zeta-function
- https://arxiv.org/abs/2409.17489
- https://mathoverflow.net/a/478644
- Posetal category associated to a poset as a right adjoint
- “Presetal category” associated to a preordered set
- Vopenka’s principle simplifies stuff in the theory of locally presentable categories. If we build categories using type theory or HoTT, what stuff from vopenka holds?
- Are pseudoepic functors those functors whose restricted Yoneda embedding is pseudomonic and Yoneda preserves absolute colimits?
- Absolutely dense functors enriched over $\mathbb {R}^{+}$ apparently reduce to topological density
- Is there a reasonable notion of category homology? It is very common for the geometric realisation of a category to be contractible (e.g. having an initial or terminal object), but maybe some notion of directed homology could work here
-
Nerves of categories:
-
Dihedral and symmetric nerves of categories via groupoids (define them first for groupoids and then Kan extend along $\mathsf{Grpd}\hookrightarrow \mathsf{Cats}$)
- Same applies to twisted nerves
- Cyclic nerve of a category
- Crossed Simplicial Group Categorical Nerves, https://arxiv.org/abs/1603.08768
-
Dihedral and symmetric nerves of categories via groupoids (define them first for groupoids and then Kan extend along $\mathsf{Grpd}\hookrightarrow \mathsf{Cats}$)
- Define contractible categories and add a discussion of universal properties as stating that certain categories are contractible. (Example of non-unique isomorphisms as e.g. being a group of order $5$ corresponds to all objects being isomorphic but the category not being contractible)
- Expand and add a proof to it.
- Sections and retractions; retracts, https://ncatlab.org/nlab/show/retract.
-
Groupoid cardinality
- https://ncatlab.org/nlab/show/groupoid+cardinality
- https://arxiv.org/abs/2104.11399
- https://terrytao.wordpress.com/2017/04/13/counting-objects-up-to-isomorphism-groupoid-cardinality/
- https://arxiv.org/abs/0809.2130
- https://qchu.wordpress.com/2012/11/08/groupoid-cardinality/
- https://mathoverflow.net/questions/363292/what-is-the-groupoid-cardinality-of-the-category-of-vector-spaces-over-a-finite
- combinatorial species
- Leinster’s the eventual image, https://arxiv.org/abs/2210.00302
- https://ncatlab.org/nlab/show/separable+functor
-
Dagger categories:
- https://en.wikipedia.org/wiki/Dagger_category
- https://ncatlab.org/nlab/show/dagger+category
- Dagger compact categories, https://en.wikipedia.org/wiki/Dagger_compact_category
- https://mathoverflow.net/questions/220032/are-dagger-categories-truly-evil
-
generalisation of dagger categories to categories with duality, i.e. categories $\mathcal{C}$ together with a functor $\dagger \colon \mathcal{C}^{\mathsf{op}}\to \mathcal{C}$
- Perhaps with the additional condition that $\dagger \circ \dagger =\text{id}$
- categories with involutions in general
Regular Categories:
- https://arxiv.org/pdf/2004.08964.pdf.
- Internal relations
Types of Morphisms in Categories:
- Characterisation of epimorphisms in the category of fields, https://math.stackexchange.com/q/4941660
- Strong epimorphisms
- Behaviour in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$, e.g. pointwise sections vs. sections in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$.
- Faithful functors from balanced categories are conservative
-
Natural cotransformations:
- If there is a natural transformation between functors between categories, taking nerves gives a homotopy equivalence (or something like that). What happens for natural cotransformations?
-
Natural transformations come with a vertical composition map
\[ \circ \colon \coprod _{G\in \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\text{Nat}\webleft (G,H\webright )\times \text{Nat}\webleft (F,G\webright )\to \text{Nat}\webleft (F,H\webright ). \]
As Morgan Rogers shows here, there’s no vertical cocomposition map of the form
\[ \text{CoNat}\webleft (F,H\webright )\to \prod _{G\in \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\text{CoNat}\webleft (G,H\webright )\times \text{CoNat}\webleft (F,G\webright ) \]or of the form
\[ \text{CoNat}\webleft (F,H\webright )\to \prod _{G\in \mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )}\text{CoNat}\webleft (G,H\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\text{CoNat}\webleft (F,G\webright ) \]for natural cotransformations.
-
Cap product for CoNat and Nat
- recovers map $\mathrm{Z}\webleft (G\webright )\times \mathrm{Cl}\webleft (G\webright )\to \mathrm{Cl}\webleft (G\webright )$.
- What is the geometric realisation of $\mathrm{CoTrans}\webleft (F,G\webright )$?
-
What is the totalisation of $\mathrm{Trans}\webleft (F,G\webright )$?
-
If we view sets as discrete topological spaces, what are the homotopy/homology groups of it? The nLab says this (https://ncatlab.org/nlab/show/totalization):
The homotopy groups of the totalization of a cosimplicial space are computed by a Bousfield-Kan spectral sequence.
The homology groups by an Eilenberg-Moore spectral sequence.
-
If we view sets as discrete topological spaces, what are the homotopy/homology groups of it? The nLab says this (https://ncatlab.org/nlab/show/totalization):
- Abstract
Adjunctions:
- Adjunctions, units, counits, and fully faithfulness as in https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints.
- Morphisms between adjunctions and bicategory $\mathsf{Adj}\webleft (\mathcal{C}\webright )$.
- https://ncatlab.org/nlab/show/transformation+of+adjoints
Presheaves and the Yoneda Lemma:
- Yoneda extension along ${\text{よ}}_{\mathcal{D}}\circ F\colon \mathcal{C}\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$, giving a functor left adjoint to the precomposition functor $F^{*}\colon \mathsf{PSh}\webleft (\mathcal{D}\webright )\to \mathsf{PSh}\webleft (\mathcal{C}\webright )$.
-
Consider the diagram
- Does the functor tensor product admit a right adjoint (“Hom”) in some sense?
- Yoneda embedding preserves limits
- universal objects and universal elements
- adjoints to the Yoneda embedding and total categories
- The co-Yoneda lemma: co/presheaves are colimits of co/representables
- Properties of categories of copresheaves
- Contravariant restricted Yoneda embedding
- Contravariant Yoneda extensions
- Make table of $\text{Lift}_{{\text{よ}}}\webleft ({\text{よ}}\webright )$, $\text{Ran}_{{\text{よ}}}\webleft ({\text{よ}}\webright )$, $\text{Ran}_{{\text{よ}}}\webleft (\style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu\webright )$, etc.
- Properties of restricted Yoneda embedding, e.g. if the restricted Yoneda embedding is full, then what can we conclude? Related: https://qchu.wordpress.com/2015/05/17/generators/
- Tensor product of functors and relation to profunctors
- rifts and rans and lifts and lans involving yoneda in $\mathsf{Cats}$ and $\mathsf{Prof}$
- Tensor product of functors and relation to rifts and rans of profunctors
Isbell Duality:
- Important: I should reconsider going with the notation $\mathsf{O}$ and $\mathsf{Spec}$. Although a bit common in the (somewhat scarce) literature on Isbell duality, I have doubts regarding how useful/nice of a choice $\mathsf{O}$ and $\mathsf{Spec}$ are, and whether there are better choices of notation for them.
- Interaction with $\times $, $\textup{Hom}$, $F_{!}$, $F^{*}$, and $F_{*}$
-
Interactions between presheaves and copresheaves:
- Natural transformations from a presheaf to a copresheaf and vice versa
- Mixed Day convolution?
-
Isbell duality for monoids:
- Set up a dictionary between properties of $\mathsf{Sets}^{\mathrm{L}}_{A}$ or $\mathsf{Sets}^{\mathrm{R}}_{A}$ and properties of $A$
- Do the same for $\mathsf{O}$ given by $A\mapsto \mathsf{Sets}^{\mathrm{L}}_{A}\webleft (X,A\webright )$
- Do the same for $\mathsf{Spec}$ given by $A\mapsto \mathsf{Sets}^{\mathrm{R}}_{A}\webleft (X,A\webright )$
- Do the same for $\mathsf{O}\circ \mathsf{Spec}$
- Do the same for $\mathsf{Spec}\circ \mathsf{O}$
- Algebras for $\mathsf{Spec}\circ \mathsf{O}$
- Coalgebras for $\mathsf{O}\circ \mathsf{Spec}$
- Properties of $\mathsf{Spec}$ (e.g. fully faithfulness) vs. properties of $\mathcal{C}$
- Properties of $\mathsf{O}$ (e.g. fully faithfulness) vs. properties of $\mathcal{C}$
- co/unit being monomorphism/epimorphism
- reflexive completion
- Isbell duality for simplicial sets; what’s the reflexive completion?
- Isbell envelope
- What does Isbell duality look like, when Cat(Aop,Set) is identified with the category of discrete opfibrations over A, using A.5.14?
-
Generalizations of Isbell duality:
- Monoidal Isbell duality: monoidality for Isbell adjunction with day convolution (6.3 of coend cofriend)
- Isbell duality with sheaves
- Isbell duality with Lawvere theories, product preserving functors or whatever
-
Isbell duality for profunctors
- In view of of , can we just use right Kan lifts/extensions?
-
Right Kan lift/extension of Hom functors (there’s probably a version of the Yoneda lemma here)
- What is $\text{Rift}_{F}\webleft (\textup{Hom}_{\mathcal{C}}\webright )$
- What is $\text{Ran}_{F}\webleft (\textup{Hom}_{\mathcal{C}}\webright )$
- What is $\text{Rift}_{\textup{Hom}_{\mathcal{C}}}\webleft (F\webright )$
- What is $\text{Ran}_{\textup{Hom}_{\mathcal{C}}}\webleft (F\webright )$
- What is $\text{Lift}_{F}\webleft (\textup{Hom}_{\mathcal{C}}\webright )$
- What is $\text{Lan}_{F}\webleft (\textup{Hom}_{\mathcal{C}}\webright )$
- What is $\text{Lift}_{\textup{Hom}_{\mathcal{C}}}\webleft (F\webright )$
- What is $\text{Lan}_{\textup{Hom}_{\mathcal{C}}}\webleft (F\webright )$
-
Tensor product of functors and Isbell duality
- What is $\mathcal{F}\boxtimes _{\mathcal{C}}\mathsf{O}\webleft (\mathcal{F}\webright )$?
- What is $\mathsf{Spec}\webleft (F\webright )\boxtimes _{\mathcal{C}}F$?
-
I think there is a canonical morphism
\[ \mathcal{F}\boxtimes _{\mathcal{C}}\mathsf{O}\webleft (\mathcal{F}\webright )\to \mathrm{Tr}\webleft (\mathcal{C}\webright ). \]
By the way, what is $\mathrm{Tr}\webleft (\mathbb {\Delta }\webright )$? What is $\mathrm{Tr}\webleft (\mathsf{B}{A}\webright )$? What about $\text{Nat}\webleft (\text{id}_{\mathcal{C}},\text{id}_{\mathcal{C}}\webright )$ for $\mathcal{C}=\mathsf{B}{A}$ or $\mathcal{C}=\mathbb {\Delta }$
-
Isbell with coends:
- $\textup{Hom}\webleft (F\webleft (A\webright ),h_A\webright )$ but it’s a coend
- Conatural transformations and all that
- Co/limit preservation for O/Spec
- Isbell duality for N vs. N + N
- What do we get if we replace $\mathsf{O}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Nat}\webleft (-,h_{X}\webright )$ by $\text{Nat}^{\webleft [W\webright ]}\webleft (-,h_{X}\webright )$, and in particular by $\DiNat \webleft (-,h_{X}\webright )$?
Constructions With Categories:
- Comparison between pseudopullbacks and isocomma categories: the “evident” functor $\mathcal{C}\times ^{\mathsf{ps}}_{\mathcal{E}}\mathcal{D}\to \mathcal{C}\mathbin {\overset {\leftrightarrow }{\times }}_{\mathcal{E}}\mathcal{D}$ is essentially surjective and full, but not faithful in general.
-
Quotients of categories by actions of monoidal categories
- Quotients of categories by actions of monoids $\mathsf{B}{A}$
- Quotients of categories by actions of monoids $A_{\mathsf{disc}}$
- Lax, oplax, pseudo, strict, etc. quotients of categories
- lax Kan extensions along $\mathsf{B}{\mathcal{C}}\to \mathsf{B}{\mathcal{D}}$ for $\mathcal{C}\to \mathcal{D}$ a monoidal functor
-
Quotient of $\mathsf{Fun}\webleft (\mathsf{B}{A},\mathcal{C}\webright )$ by the $A$-action.
- This is used to build the cycle and $p$-cycle categories from the paracycle category.
- The quotient of $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$ by the $\mathbb {N}$-action should act as a kind of cyclic directed loop space of $\mathcal{C}$
-
$\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$ as a homotopy pullback in $\mathsf{Cats}_{\mathsf{2}}$
- $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {Z},\mathcal{C}\webright )$ as a homotopy pullback in $\mathsf{Grpd}_{\mathsf{2}}$
- Free loop space objects
Limits and colimits:
- Initial/terminal objects as left/right adjoints to $!_{\mathcal{C}}\colon \mathcal{C}\to \mathsf{pt}$.
- A small cocomplete category is a poset, https://mathoverflow.net/questions/108737/small-categories-and-completeness
- Co/limits in $\mathsf{B}{A}$, including e.g. co/equalisers in $\mathsf{B}{A}$
- Add the characterisations of absolutely dense functors given in to .
- Absolutely dense functors, https://ncatlab.org/nlab/show/absolutely+dense+functor. Also theorem 1.1 here: http://www.tac.mta.ca/tac/volumes/8/n20/n20.pdf.
- Dense functors, codense functors, and absolutely codense functors.
- van kampen colimits
Completions and cocompletions:
- https://mathoverflow.net/questions/429003/manifolds-as-cauchy-completed-objects
- what is the conservative cocompletion of smooth manifolds? Is it related to diffeological spaces?
- what is the conservative completion of smooth manifolds? Is it related to diffeological spaces?
- what is the conservative bicompletion of smooth manifolds? Is it related to diffeological spaces?
- completion of a category under exponentials
- https://mathoverflow.net/questions/468897/cocompletion-without-cocontinuous-functors
- The free cocompletion of a category;
- The free completion of a category;
- The free completion under finite products;
- The free cocompletion under finite coproducts;
- The free bicompletion of a category;
- The free bicompletion of a category under nonempty products and nonempty coproducts (https://ncatlab.org/nlab/show/free+bicompletion);
- Cauchy completions
- Dedekind–MacNeille completions
- Isbell completion (https://ncatlab.org/nlab/show/reflexive+completion)
- Isbell envelope
Ends and Coends:
- Ask Fosco about whether composition of dinatural transformations into higher dinaturals could be useful for https://arxiv.org/abs/2409.10237
-
Cyclic co/ends
- Try to mimic the construction given in Haugseng for the cycle, paracycle, cube, etc. categories
-
cyclotomic stuff for cyclic co/ends
- Check out Ayala–Mazel-Gee–Rozenblyum’s Symmetries of the cyclic nerve
- isogenetic $\mathbb {N}^{\times }$-action (what the fuck does this mean?)
-
After stating the co/ends
\[ \begin{aligned} \int ^{A\in \mathcal{C}}h_{A}\odot \mathcal{F}^{A},\\ \int ^{A\in \mathcal{C}}h^{A}\odot F_{A}, \end{aligned} \qquad \begin{aligned} \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (h_{A},\mathcal{F}^{A}\webright ),\\ \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (h^{A},F_{A}\webright ) \end{aligned} \]
in the co/end version of the Yoneda lemma, add a remark explaining what the co/ends
\[ \begin{aligned} \int _{A\in \mathcal{C}}h_{A}\odot \mathcal{F}^{A},\\ \int _{A\in \mathcal{C}}h^{A}\odot F_{A}, \end{aligned} \qquad \begin{aligned} \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (h_{A},\mathcal{F}^{A}\webright ),\\ \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (h^{A},F_{A}\webright ) \end{aligned} \]and the co/ends
\[ \begin{aligned} \int ^{A\in \mathcal{C}}\mathcal{F}^{A}\odot h_{A},\\ \int ^{A\in \mathcal{C}}F_{A}\odot h^{A},\\ \int _{A\in \mathcal{C}}\mathcal{F}^{A}\odot h_{A},\\ \int _{A\in \mathcal{C}}F_{A}\odot h^{A},\\ \end{aligned} \qquad \begin{aligned} \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (\mathcal{F}^{A},h_{A}\webright ),\\ \int _{A\in \mathcal{C}}\mathsf{Sets}\webleft (F_{A},h^{A}\webright ),\\ \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (\mathcal{F}^{A},h_{A}\webright ),\\ \int ^{A\in \mathcal{C}}\mathsf{Sets}\webleft (F_{A},h^{A}\webright ) \end{aligned} \]are.
- ends $\mathcal{C}\to \mathcal{D}$ with $\odot $ is a special case of ends for a certain enrichment over $\mathcal{D}$
-
try to figure out what the end/coend
\[ \int ^{X\in \mathcal{C}}h^{A}_{X}\times h^{X}_{B},\qquad \int _{X\in \mathcal{C}}h^{A}_{X}\times h^{X}_{B} \]
are for $\mathcal{C}=\mathsf{B}{A}$. (I think the coend is like tensor product of $A$ as a left $A$-set with it as a right $A$-set)
- Cyclic ends
- Dihedral ends
- Does Haugseng’s constructions give a way to define cyclic co/homology with coefficients in a bimodule?
- Category of elements of dinatural transformation classifier
- Examples of co/ends: https://mathoverflow.net/a/461814
- Cofinality for co/ends, https://mathoverflow.net/questions/353876
- “Fourier transforms” as in https://arxiv.org/pdf/1501.02503#page=168 or https://tetrapharmakon.github.io/stuff/itaca.pdf
Weighted/diagonal category theory:
- co/ends as centre/trace-infused co/limits: compare the co/end of $\textup{Hom}_{\mathcal{C}}$ with the co/limit of $\textup{Hom}_{\mathcal{C}}$
- Codensity $W$-weighted monads, $\text{Ran}^{\webleft [W\webright ]}_{F}\webleft (F\webright )$;
- Codensity diagonal monads, $\mathrm{DiRan}_{F}\webleft (F\webright )$;
Profunctors:
-
Apartness defines a composition for relations, but its analogue
\[ \mathfrak {q}\mathbin {\square }\mathfrak {p}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{A\in \mathcal{C}}\mathfrak {p}^{-_{1}}_{A}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathfrak {q}^{A}_{-_{2}} \]
fails to be unital for profunctors with the unit $h^{A}_{-}$. Is it unital for some other unit? Is there a less obvious analogue of apartness composition for profunctors? Or maybe does $\mathsf{Prof}$ equipped with $\square $ and units $h^{A}_{-}$ form a skew bicategory?
Is $\Delta _{\text{Ø}}$ a unit?
- Figure what monoidal category structures on $\mathsf{Sets}$ induce associative and unital compositions on $\mathsf{Prof}$.
- https://mathoverflow.net/questions/470213/a-distributor-between-categories-induces-a-distributor-between-their-categories
- Different compositions for profunctors from monoidal structures on the category of sets (e.g. https://mathoverflow.net/questions/155939/what-other-monoidal-structures-exist-on-the-category-of-sets)
- Nucleus of a profunctor;
- Isbell duality for profunctors:
Centres and Traces of Categories:
- Explicitly work out the trace and $\pi _{0}\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},-\webright )$ for monoids with few elements.
-
$\webleft [1_{A}\webright ]$ can contain more than one element. An example is $\mathsf{Sets}\webleft (\mathbb {N},\mathbb {N}\webright )$ and the maps given by
\begin{align*} \webleft\{ 0,1,2,3,\ldots \webright\} & \mapsto \webleft\{ 0,0,1,2,\ldots \webright\} ,\\ \webleft\{ 0,1,2,3,\ldots \webright\} & \mapsto \webleft\{ 2,3,4,5,\ldots \webright\} . \end{align*}
Show also that if $c\in \webleft [1_{A}\webright ]$, then $c$ is idempotent.
- Drinfeld centre
- trace of the symmetric simplex category; it’s probably different from that of $\mathsf{FinSets}$
- Trace of $\mathsf{Rep}_{G}$ and interaction with induction, restriction, etc.
- $\pi _{0}\webleft (\mathsf{B}\mathbb {N},\mathsf{B}{A}\webright )$, $K\webleft (\mathsf{B}\mathbb {N},\mathsf{B}{A}\webright )$, and $\mathrm{Tr}\webleft (\mathsf{B}\mathbb {N},\mathsf{B}{A}\webright )$ as concepts of conjugacy for monoids, their equivalents for categories, and comparison with traces
- Comparison between $\pi _{0}\webleft (\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )\webright )$ and $K\webleft (\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )\webright )$
- Lax, oplax, pseudo, and strict trace of simplex 2-category
- duality over $\Gamma $ might give a map from product of a monoid with a set to $\mathrm{Tr}\webleft (\Gamma \webright )$
-
Studying the set $\text{Nat}\webleft (\text{id}_{\mathcal{C}},F\webright )$ as a notion of categorical trace:
-
Ganter–Kapranov define the trace of a $1$-endomorphism $f\colon A\to A$ in a $2$-category $\mathcal{C}$ to be the set $\textup{Hom}_{\mathcal{C}}\webleft (\text{id}_{A},f\webright )$;
- https://arxiv.org/abs/math/0602510
- https://golem.ph.utexas.edu/string/archives/000757.html
- https://ncatlab.org/nlab/show/categorical+trace
We should study this notion in detail, and also study $\text{Nat}\webleft (F,\text{id}_{\mathcal{C}}\webright )$ as well as $\text{CoNat}\webleft (\text{id}_{\mathcal{C}},F\webright )$ and $\text{CoNat}\webleft (F,\text{id}_{\mathcal{C}}\webright )$.
-
Ganter–Kapranov define the trace of a $1$-endomorphism $f\colon A\to A$ in a $2$-category $\mathcal{C}$ to be the set $\textup{Hom}_{\mathcal{C}}\webleft (\text{id}_{A},f\webright )$;
- Centre of bicategories
- Lax centres and lax traces
-
Examples of traces:
- Discrete categories
-
Posets
- $\mathsf{Open}\webleft (X\webright )$
-
Trace of small but non-finite categories:
- $\mathsf{Sets}$
- $\mathsf{Rep}\webleft (G\webright )$
- category of finite groups
- category of finite abelian groups
- category of finite $p$-groups for fixed $p$
- category of finite $p$-groups for all $p$
- category of finite fields
- category of finite topological spaces
- category of finite [insert a mathematical object here]
- When is the trace of a groupoid just the disjoint sum of sets of conjugacy classes?
-
Set-theoretical issues when defining traces
-
Sets is a large category, and yet we can speak of its centre
\begin{align*} \mathrm{Z}\webleft (\mathsf{Sets}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{A\in \mathsf{Sets}}\mathsf{Sets}\webleft (X,X\webright )\\ & \cong \text{Nat}\webleft (\text{id}_{\mathsf{Sets}},\text{id}_{\mathsf{Sets}}\webright )\\ & \cong \text{pt}. \end{align*}
Is there a way to do the same for the trace of sets, or otherwise work with traces of large categories?
-
Sets is a large category, and yet we can speak of its centre
- Understand how traces are defined via universal properties in Xinwen Zhu’s Geometric Satake, categorical traces, and arithmetic of Shimura varieties.
-
trace as an $\text{Obj}\webleft (\mathcal{C}\webright )$-indexed set
- properties, functoriality, etc.
- Maybe actually call $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$ the categorical directed loop space of $\mathcal{C}$?
- Cyclic version of $\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},\mathcal{C}\webright )$
- Traces of categories, nerves of categories, and the cycle category
Categorical Hochschild Homology:
- To any functor we have an associated natural transformation (). Do we have sharp transformations associated to natural transformation?
- build Hochschild co/simplicial set and study its homotopy groups
-
$\mathsf{Fun}\webleft (\mathsf{B}\mathbb {N},X_{\bullet }\webright )$ vs. $\mathsf{Fun}\webleft (\Delta ^{1}/\partial \Delta ^{1},X_{\bullet }\webright )$
- Their $\pi _{0}$’s vs. the $\pi _{0}$’s of $\textup{Hom}_{X_{\bullet }}\webleft (x,x\webright )$, of $\textup{Hom}^{\mathrm{L}}_{X_{\bullet }}\webleft (x,x\webright )$, and $\textup{Hom}^{\mathrm{R}}_{X_{\bullet }}\webleft (x,x\webright )$.
Monoidal Categories:
- Proving a certain diagram between free monoidal categories commutes involves Fermat’s little theorem. Can we reverse this and prove Fermat’s little theorem from the commutativty of that diagram?
- https://nilesjohnson.net/notes/grPic-P2S.pdf
- Proof that monoidal equivalences $F$ of monoidal categories automatically admit monoidal natural isomorphisms $\text{id}_{\mathcal{C}}\cong F^{-1}\circ F$ and $\text{id}_{\mathcal{D}}\cong F\circ F^{-1}$.
-
Proof that category with products is monoidal under the Cartesian monoidal structure, [
MO 382264
]. -
Explore 2-categorical algebra:
- Find a construction of the free 2-group on a monoidal category. Apply it to the multiplicative structure on the category of finite sets and permutations, as well as to the multiplicative structure on the 1-truncation of the sphere spectrum, and try to figure out whether this looks like a categorification of $\mathbb {Q}$.
- What is the free 2-group on $\webleft (\mathbb {\Delta },\oplus ,\webleft [0\webright ]\webright )$?
-
Categorify the preorder $\leq $ on $\mathbb {N}$ to a promonad $\mathfrak {p}$ on the groupoid of finite sets and permutations $\mathbb {F}$:
- A preorder is a monad in $\mathrm{Rel}$
- A promonad is a monad in $\mathsf{Prof}$.
-
There’s a promonad $\mathfrak {p}$ in $\mathbb {F}$ defined by
\[ \mathfrak {p}\webleft (m,n\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \text{surjections from $\webleft\{ 1,\ldots ,m\webright\} $ to $\webleft\{ 1,\ldots ,n\webright\} $}\webright\} \]
This promonad categorifies $\leq $ in that its values are the witnesses to the fact that $m$ is bigger than $n$ (i.e. surjections).
- Figure out whether this promonad extends to the 1-truncation of the sphere spectrum, and perhaps to other categorified analogues of monoids/groups/rings.
- https://arxiv.org/abs/1307.5969
- https://arxiv.org/abs/1306.3215
- https://mathoverflow.net/questions/477219/reference-for-the-monoidal-category-structure-x-otimes-y-x-y-x-times-y
- Include an explicit proof of
- Include an explicit proof of
- obstruction theory for braided enhancements of monoidal categories, using the “moduli category of braided enhancements”
- Define symmetric and exterior algebras internal to braided monoidal categories
- https://mathoverflow.net/q/382364
- https://mathoverflow.net/q/471490
- Concepts of bicategories applied to monoidal categories (e.g. internal adjunctions lead to dualisable objects)
- Involutive Category Theory
- https://mathoverflow.net/questions/474662/the-analogy-between-dualizable-categories-and-compact-hausdorff-spaces
Bimonoidal categories:
Six functor formalisms:
- https://mathoverflow.net/questions/258159/yoga-of-six-functors-for-group-representations
-
Is the 1-categorical analogue of six functor formalisms given by Mann interesting?
-
Mann defines:
A six functor formalism is an $\infty $-functor $f\colon \mathsf{Corr}\webleft (C,E\webright )\to \mathsf{Cats}_{\infty }$ such that $-\otimes A$, $f^{*}$, and $f_{!}$ admit right adjoints
-
Is the notion
A 1-categorical six functor formalism is a (lax?) $2$-functor $f\colon \mathsf{Corr}\webleft (C,E\webright )\to \mathsf{Cats}_{2}$ (or should $\mathsf{Cats}$ be the target?) such that $-\otimes A$, $f^{*}$, and $f_{!}$ admit right adjoints
interesting?
-
Mann defines:
- Interaction of the six functors with Kan extensions (e.g. how the left Kan extension of $-\otimes A$ may interact with the other functors)
- Contexts like Wirthmuller Grothendieck etc
- formalisation by cisinski and deglise
-
How do the following examples fit?
- base change between $\mathcal{C}_{/X}$ and $\mathcal{C}_{/Y}$
- $f_{!}\dashv f_{*}\dashv f^{*}$ adjunction between powersets
- $f_{!}\dashv f_{*}\dashv f^{*}$ adjunction between $\mathsf{Span}\webleft (\text{pt},A\webright )$ and $\mathsf{Span}\webleft (\text{pt},B\webright )$
- quadruple adjunction between powersets induced by a relation
- adjunctions between categories of presheaves induced by a functor or a profunctor
- Adjunction between left $A$-sets and left $B$-sets
Do they have exceptional $f^{!}$? Is there a notion of Fourier–Mukai transform for them? What kind of compatibility conditions (proper base change, etc.) do we have?
Skew monoidal categories:
- Does the $\mathbb {E}_{1}$ tensor product of monoids admit a skew monoidal category structure?
- Is there a (right?) skew monoidal category structure on $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ using right Kan extensions instead of left Kan extensions?
- Similarly, are there skew monoidal category structures on the subcategory of $\mathbf{Rel}\webleft (A,B\webright )$ spanned by the functions using left Kan extensions and left Kan lifts?
-
Add example: $\mathcal{C}$ with coproducts, take $\mathcal{C}_{X/}$ and define
\[ \webleft (X\xrightarrow {f}A\webright )\oplus \webleft (X\xrightarrow {g}B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [X\to X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}X\xrightarrow {f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\webright ] \]
-
Duals:
- Dualisable objects in monoidal categories and traces of endomorphisms of them, including also examples for monoidal categories which are not autonomous/rigid, such as $\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{C}\webright ),\circ ,\text{id}_{\mathcal{C}}\webright )$.
- compact closed categories
- star autonomous categories
- Chu construction
- Balanced monoidal categories, https://ncatlab.org/nlab/show/balanced+monoidal+category
- Traced monoidal categories, https://ncatlab.org/nlab/show/traced+monoidal+category
- Invertible objects and Picard groupoids
- https://mathoverflow.net/questions/155939/what-other-monoidal-structures-exist-on-the-category-of-sets
- Free braided monoidal category with a braided monoid: https://ncatlab.org/nlab/show/vine
- https://golem.ph.utexas.edu/category/2024/08/skew_monoidal_categories_throu.html
Fibred category theory:
- Internal $\mathbf{Hom}$ in categories of co/Cartesian fibrations.
- Tensor structures on fibered categories by Luca Terenzi: https://arxiv.org/abs/2401.13491. Check also the other papers by Luca Terenzi.
- https://ncatlab.org/nlab/show/cartesian+natural+transformation (this is a cartesian morphism in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ apparently)
- CoCartesian fibration classifying $\mathsf{Fun}\webleft (F,G\webright )$, https://mathoverflow.net/questions/457533/cocartesian-fibration-classifying-mathrmfunf-g
Operads and multicategories:
Monads:
- Kantorovich monad (https://ncatlab.org/nlab/show/Kantorovich+monad) and probability monads in general, https://ncatlab.org/nlab/show/monads+of+probability%2C+measures%2C+and+valuations.
Enriched Categories:
- $\mathcal{V}$-matrices
Bicategories:
- Bicategories of matrices, as in Street’s Variation through enrichment, also https://arxiv.org/abs/2410.18877
- https://mathoverflow.net/a/86933
- What are the internal 2-adjunctions in the fundamental $2$-groupoid of a space?
- 2-category structure on $\mathsf{Mod}_{R}$, where a $2$-morphism is a commutative square. Characterisation of adjuntions therein (but be careful if this ends up being in an NDA)
- Cook up a very large list of examples of bicategories, like the ones I made for the AI problems. In particular, find an interesting bicategory of representations qualitatively different from the one I described in the Epoch AI problem
- 2-category structure on category of $R$-algebras as enriched $\mathsf{Mod}_{R}$-categories
-
Let $\mathcal{C}$ be a bicategory, let $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, and let $F,G\in \text{Obj}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )\webright )$.
-
Does precomposition with $\lambda ^{\mathcal{C}}_{A|F}\colon \text{id}_{A}\circ F\Rightarrow F$ induce an isomorphism of sets
\[ \textup{Hom}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F,G\webright )\cong \textup{Hom}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F\circ \text{id}_{A},G\webright ) \]
for each $F,G\in \text{Obj}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )\webright )$?
-
Similarly, do we have an induced isomorphism of the form
\[ \textup{Hom}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F,G\webright )\cong \textup{Hom}_{\mathsf{Hom}_{\mathcal{C}}\webleft (A,B\webright )}\webleft (F,\text{id}_{B}\circ G\webright ) \]
and so on?
-
Does precomposition with $\lambda ^{\mathcal{C}}_{A|F}\colon \text{id}_{A}\circ F\Rightarrow F$ induce an isomorphism of sets
- Are there two Duskin nerve functors? (lax/oplax/etc.?)
-
Interaction with cotransformations:
- Can we abstract the structure provided to $\mathsf{Cats}_{\mathsf{2}}$ by natural cotransformations?
- Are there analogues of cotransformations for $\textbf{Rel}$, $\mathsf{Span}$, $\mathsf{BiMod}$, $\mathsf{MonAct}$, etc.?
- Perhaps this might also make sense as a 1-categorical definition, e.g. comorphisms of groups from $A$ to $B$ as $\mathsf{Sets}\webleft (A,B\webright )$ quotiented by $f\webleft (ab\webright )\sim f\webleft (a\webright )f\webleft (b\webright )$.
- Consider developing the analogue of traces for endomorphisms of dualisable objects in monoidal categories to the setting of bicategories, including e.g. the trace of a category as a trace internal to $\mathsf{Prof}$.
- Centres of bicategories (lax, strict, etc.)
- Concepts of monoidal categories applied to bicategories (e.g. traces)
- Internal adjunctions in $\mathsf{Mod}$ as in Section 6.3 of [Johnson–Yau, 2-Dimensional Categories]; see Example 6.2.6 of [Johnson–Yau, 2-Dimensional Categories].
- Comonads in the bicategory of profunctors.
- 2-limit of $\text{id},\text{id}\colon \mathsf{Sets}\rightrightarrows \mathsf{Sets}$ is $\mathsf{B}\mathbb {Z}$, https://mathoverflow.net/questions/209904/van-kampen-colimits?rq=1#comment520288_209904
- https://mathoverflow.net/questions/473527/universal-property-of-2-presheaves-and-pseudo-lax-colax-natural-transformations
- https://mathoverflow.net/questions/473526/free-cocompletion-of-a-2-category-under-pseudo-colimits-lax-colimits-and-colax
Types of morphisms in bicategories:
- Behaviour in 2-categories of pseudofunctors (or lax functors, etc.), e.g. pointwise pseudoepic morphisms in vs. pseudoepic morphisms in 2-categories of pseudofunctors.
- Statements like “coequifiers are lax epimorphisms”, Item 2 of Examples 2.4 of https://arxiv.org/abs/2109.09836, along with most of the other statements/examples there.
- Dense, absolutely dense, etc. morphisms in bicategories
Internal adjunctions:
- https://www.google.com/search?q=mate+of+an+adjunction
- Moreover, by uniqueness of adjoints (, of ), this implies also that $S=f^{-1}$.
- define bicategory $\mathsf{Adj}\webleft (\mathcal{C}\webright )$
- walking monad
- proposition: 2-functors preserve unitors and associators
- https://ncatlab.org/nlab/show/2-category+of+adjunctions. Is there a 3-category too?
- https://ncatlab.org/nlab/show/free+monad
- https://ncatlab.org/nlab/show/CatAdj
- https://ncatlab.org/nlab/show/Adj
- $\mathsf{Adj}\webleft (\mathsf{Adj}\webleft (\mathcal{C}\webright )\webright )$
-
Examples of internal adjunctions
- Internal adjunctions in $\mathsf{Mod}$.
- Internal adjunctions in $\mathsf{PseudoFun}\webleft (\mathcal{C},\mathcal{D}\webright )$.
- Internal adjunctions in $\mathsf{LaxFun}\webleft (\mathcal{C},\mathcal{D}\webright )$.
- Internal adjunctions in 2-categories related to fibrations.
2-Categorical Limits:
Topos theory:
- https://mathoverflow.net/q/479496
- Grothendieck topologies on $\mathsf{B}{A}$
- Enriched Grothendieck topologies
-
Cotopos theory:
- Copresheaves and copresheaf cotopoi
-
Elementary cotopoi
- https://mathoverflow.net/questions/474287/intuition-for-the-internal-logic-of-a-cotopos
-
https://mathoverflow.net/questions/394098/what-is-a-cotopos
In case you haven’t seen it yet, Grothendieck studies (pseudo) cotopos in pursuing stacks
Formal category theory:
- Yosegi boxes https://arxiv.org/abs/1901.01594
Homotopical Algebra:
Simplicial stuff:
- Internal adjunctions in $\mathbb {\Delta }$ are the same as Galois connections between $\webleft [n\webright ]$ and $\webleft [m\webright ]$. (NDA)
- https://mathoverflow.net/q/478461
- draw coherence for lax functors using the diagram for $\Delta ^{2}$
- characterisation of simplicial sets such that left, right, and two-sided homotopies agree
- every continuous simplicial set arises as the nerve of a poset.
- Functor $\mathrm{sd}$ is convolution of ${\text{よ}}_{\mathbb {\Delta }}$ with itself; see https://arxiv.org/pdf/1501.02503.pdf#page=109
- Extra degeneracies
- Comparison between $\Delta ^{1}/\partial \Delta ^{1}$ and $\mathsf{B}\mathbb {N}$
$\infty $-Categories:
- https://arxiv.org/abs/2410.17102
- https://arxiv.org/abs/2410.02578, https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/st74cr650, https://arxiv.org/abs/2206.00849
- https://mathoverflow.net/questions/479716/non-strictly-unital-functors-of-infinity-categories
- https://mathoverflow.net/questions/472253/whats-the-localization-of-the-infty-category-of-categories-under-inverting-f
Monoids:
- https://math.stackexchange.com/a/4996051/603207, https://arxiv.org/abs/1006.5687
- Six functor formalism for monoids, following Chapter 2: Constructions With Sets, Section 2.6.4, but in which $\cap $ and $\webleft [-,-\webright ]$ are replaced with Day convolution.
- Monoid $\webleft (\webleft\{ 1,\ldots ,n\webright\} \cup \infty ,\gcd \webright )$. The element $\infty $ can be replaced by $p^{\operatorname*{\text{min}}\webleft (e^{1}_{1},\ldots ,e^{m}_{1}\webright )}_{1}\cdots p^{\operatorname*{\text{min}}\webleft (e^{1}_{k},\ldots ,e^{m}_{k}\webright )}_{k}$.
-
Universal property of localisation of monoids as a left adjoint to the forgetful functor $\mathcal{C}\to \mathcal{D}$, where:
- $\mathcal{C}$ is the category whose objects are pairs $\webleft (A,S\webright )$ with $A$ a monoid and $S$ a submonoid of $A$.
- $\mathcal{D}$ is the category whose objects are pairs $\webleft (A,S\webright )$ with $A$ a monoid and $S$ a submonoid of $A$ which is also a group.
Explore if we can define field spectra with an approach like this
- Adjunction between monoids and monoids with zero corresponding to $\webleft (-\webright )^{-}\dashv \webleft (-\webright )^{+}$
- Rock paper scissors as an example of a non-associative operation
- https://mathoverflow.net/questions/438305/grothendieck-group-of-the-fibonacci-monoid
- Witt monoid, https://www.google.com/search?q=Witt+monoid
- semi-direct product of monoids, https://ncatlab.org/nlab/show/semidirect+product+group
- morphisms of monoids as natural transformation between left $A$-sets over $A$ and $B_{A}$.
- Figure out if 2-morphisms of monoids coming from $\mathsf{Fun}^{\otimes }\webleft (A_{\mathsf{disc}},B_{\mathsf{disc}}\webright )$, $\mathsf{PseudoFun}\webleft (\mathsf{B}{A},\mathsf{B}{B}\webright )$, etc. are interesting
- Write sections on the quotient and set of fixed points of a set by a monoid action
-
Isbell’s zigzag theorem for semigroups: the following conditions are equivalent:
- A morphism $f\colon A\to B$ of semigroups is an epimorphism.
-
For each $b\in B$, one of the following conditions is satisfied:
- We have $f\webleft (a\webright )=b$.
- There exist some $m\in \mathbb {N}_{\geq 1}$ and two factorisations
\begin{align*} b & = a_{0}y_{1},\\ b & = x_{m}a_{2m} \end{align*}
connected by relations
\begin{align*} a_{0} = x_{1}a_{1},\\ a_{1}y_{1} = a_{2}y_{2},\\ x_{1}a_{2} = x_{2}a_{3},\\ a_{2m-1}y_{m} = a_{2m} \end{align*}such that, for each $1\leq i\leq m$, we have $a_{i}\in \mathrm{Im}\webleft (f\webright )$.
Wikipedia says in https://en.wikipedia.org/wiki/Isbell%27s_zigzag_theorem:
For monoids, this theorem can be written more concisely:
-
Representation theory of monoids
- https://mathoverflow.net/questions/37115/why-arent-representations-of-monoids-studied-so-much
- Representation theory of groups associated to monoids (groups of units, group completions, etc.)
Monoid Actions:
-
$f_{!}\dashv f^{*}\dashv f_{*}$ adjunction
- Is it related to the Kan extensions adjunction for $f\colon \mathsf{B}{A}\to \mathsf{B}{B}$ and the categories $\mathsf{Sets}^{\mathrm{L}}_{A}\cong \mathsf{PSh}\webleft (\mathsf{B}{A}^{\mathsf{op}},\mathsf{Sets}\webright )$ and $\mathsf{Sets}^{\mathrm{L}}_{B}\cong \mathsf{PSh}\webleft (\mathsf{B}{B}^{\mathsf{op}},\mathsf{Sets}\webright )$?
- Is it related to the cobase change adjunction of https://ncatlab.org/nlab/show/base+change? Maybe we can take a morphism of monoids $f\colon A\to B$ and consider $B^{\mathrm{L}}_{A}$ as a left $A$-set, and then $\webleft (\mathsf{Sets}^{\mathrm{L}}_{A}\webright )_{A/}$ and $\webleft (\mathsf{Sets}^{\mathrm{L}}_{A}\webright )_{B^{\mathrm{L}}_{A}/}$
- https://arxiv.org/abs/2112.10198
- double category of monoid actions
- Analogue of Brauer groups for $A$-sets
- Hochschild homology for $A$-sets
Group Theory:
- Is $\sum _{\webleft [g\webright ]\in \mathrm{Cl}\webleft (G\webright )}\frac{1}{\left\lvert g\right\rvert }$ an interesting invariant of $G$?
- Idempotent endomorphism $f\colon A\to A$ is the same as a decomposition $A\cong B\oplus C$ via $B\cong \mathrm{Im}\webleft (f\webright )$ and $C\cong \mathrm{Ker}\webleft (f\webright )$.
- https://math.stackexchange.com/questions/34271/order-of-general-and-special-linear-groups-over-finite-fields
Linear Algebra:
- https://math.stackexchange.com/questions/1715249/the-number-of-subspaces-over-a-finite-field
- https://math.stackexchange.com/questions/70801/how-many-k-dimensional-subspaces-there-are-in-n-dimensional-vector-space-over
- https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient
- https://en.wikipedia.org/wiki/List_of_q-analogs
Commutative Algebra:
- https://math.stackexchange.com/questions/637918/
- https://categorytheory.zulipchat.com/#narrow/stream/411257-theory.3A-mathematics/topic/Big.20Witt.20ring
- https://math.stackexchange.com/questions/535623/how-many-irreducible-factors-does-xn-1-have-over-finite-field
-
Derivations between morphisms of $R$-algebras, after https://mathoverflow.net/questions/434488
-
Namely, a derivation from a morphism $f\colon A\to B$ of $R$-algebras to a morphism $g\colon A\to B$ of $R$-algebras is a map $D\colon B\to B$ such that we have
\[ D\webleft (ab\webright )=g\webleft (a\webright )D\webleft (b\webright )+D\webleft (a\webright )f\webleft (b\webright ) \]
for each $a,b\in B$.
-
Namely, a derivation from a morphism $f\colon A\to B$ of $R$-algebras to a morphism $g\colon A\to B$ of $R$-algebras is a map $D\colon B\to B$ such that we have
Topological Algebra:
- https://mathoverflow.net/q/477757
- https://math.stackexchange.com/questions/2593556/galois-theory-for-topological-fields
Differential Graded Algebras:
Topology:
- https://arxiv.org/abs/2402.12316
-
Write about the 6-functor formalism for sheaves on topological spaces and for topological stacks, with lots of examples.
- MO question titled 6-functor formalism for topological stacks: https://mathoverflow.net/q/471758
Measure Theory:
-
There’s a theorem saying that there does not exist an infinite-dimensional “Lebesgue” measure, i.e. (from https://en.wikipedia.org/wiki/Infinite-dimensional_Lebesgue_measure):
Let $X$ be an infinite-dimensional, separable Banach space. Then, the only locally finite and translation invariant Borel measure $\mu $ on $X$ is a trivial measure. Equivalently, there is no locally finite, strictly positive, and translation invariant measure on $X$.
What kind of measures exist/not exist that satisfy all conditions above except being locally finite?
- https://ncatlab.org/nlab/show/categories+of+measure+theory
- Functions $f_{!}$, $f^{*}$, and $f_{*}$ between spaces of (probability) measures on probability/measurable spaces, mimicking how a map of sets $f\colon X\to Y$ induces morphisms of sets $f_{!}$, $f^{*}$, and $f_{*}$ between $\mathcal{P}\webleft (X\webright )$ and $\mathcal{P}\webleft (Y\webright )$.
-
Analogies between representable presheaves and the Yoneda lemma on the one hand and Dirac probability measures on the other hand
- Universal property of the embedding of a space $X$ into the space of probability measures on $X$
- Same question but for distributions
-
non-symmetric metric on space of probability measures where we define $\mathrm{d}\webleft (\mu ,\nu \webright )$ to be the measure given by
\[ U\mapsto \int _{U}\rho _{\mu }\, \mathrm{d}\nu , \]
where $\rho _{\mu }$ is the probability density of $\mu $. Can we make this idea work?
- https://arxiv.org/abs/0801.2250
-
https://mathoverflow.net/questions/325861
In particular, I came across a PhD thesis by Martial Agueh. I thought it was interesting because it explicitly investigated the geodesics of Wasserstein space to produce solutions to a type of parabolic PDE.
Probability Theory:
- https://www.epatters.org/wiki/stats-ml/categorical-probability-theory
- https://ncatlab.org/nlab/show/category-theoretic+approaches+to+probability+theory
- Categorical probability theory
- https://golem.ph.utexas.edu/category/2024/08/introduction_to_categorical_pr.html
- https://arxiv.org/abs/1109.1880
- Connection between fractional differential operators and stochastic processes with jumps
Statistics:
Metric Spaces:
- Lawvere metric spaces: object of $\mathcal{V}$-natural transformations corresponds to $\inf \webleft (\mathrm{d}\webleft (f\webleft (x\webright ),g\webleft (x\webright )\webright )\webright )$.
- Does the assignment $d\webleft (x,y\webright )\mapsto d\webleft (x,y\webright )/\webleft (1+d\webleft (x,y\webright )\webright )$ constructing a bounded metric from a metric be given a universal property?
- Explore Lawvere metric spaces in a comprehensive manner
- metric $\mathrm{lcm}\webleft (x,y\webright )/\gcd \webleft (x,y\webright )$ on $\mathbb {N}$, https://mathoverflow.net/questions/461588/
- https://golem.ph.utexas.edu/category/2023/05/metric_spaces_as_enriched_categories_ii.html
- Simon Willerton’s work on the Legendre–Fenchel transform:
$p$-Adic Analysis:
- Analysis of functions $\mathbb {Z}_{p}\to \mathbb {Q}_{q}$, $\mathbb {Q}_{p}\to \mathbb {Q}_{q}$, $\mathbb {Z}_{p}\to \mathbb {C}_{q}$, etc.
Partial Differential Equations:
-
Geometry of PDEs:
- https://mathoverflow.net/questions/457268/pdes-and-algebraic-varieties
- Can we build a kind of algebraic geometry of PDEs starting with the notion of the zero locus of a differential operator?
Functional Analysis:
- In the Hilbert space $\ell ^{2}\webleft (\mathbb {N};\mathbb {C}\webright )$, the operator $\webleft (x_{n}\webright )_{n\in \mathbb {N}}\mapsto \webleft (x_{n+1}\webright )_{n\in \mathbb {N}}$ admits $\webleft (x_{n}\webright )_{n\in \mathbb {N}}\mapsto \webleft (0,x_{0},x_{1},\ldots \webright )$ as its adjoint.
- https://arxiv.org/abs/2110.06300
Lie algebras:
- Pre-Lie algebras
- Post-Lie algebras
Modular Representation Theory:
- https://math.stackexchange.com/questions/167979/representation-of-cyclic-group-over-finite-field
- https://math.stackexchange.com/questions/153429/irreducible-representations-of-a-cyclic-group-over-a-field-of-prime-order
Homotopy theory:
- Pascal’s triangle via homology of $n$-tori, https://topospaces.subwiki.org/wiki/Homology_of_torus
- Conditions on morphisms of spaces $f\colon X\to Y$ such that $f^{*}\colon \webleft [Y,K\webright ]\to \webleft [X,K\webright ]$ or $f_{*}\colon \webleft [K,X\webright ]\to \webleft [K,Y\webright ]$ are injective/surjective (so, epi/monomorphisms in $\mathsf{Ho}\webleft (\mathsf{Top}\webright )$) or other conditions.
Differential Geometry:
- functor of points approach to differential geometry
Number Theory:
- https://math.stackexchange.com/questions/10233/uses-of-quadratic-reciprocity-theorem/10719#10719
- https://mathoverflow.net/questions/120067/what-do-theta-functions-have-to-do-with-quadratic-reciprocity
Quantum Mechanics:
Quantum Field Theory:
- https://arxiv.org/abs/2309.15913 and https://arxiv.org/abs/2311.09284
- The current ongoing work on higher gauge theory, specially Christian Saemann’s
- The recent work about determining the value of the strong coupling constant in the long-distance range, some pointers and keywords for this are available at this scientific american article.
Combinatorics:
- Catalan numbers, https://mathstrek.blog/2012/02/19/power-series-and-generating-functions-ii-formal-power-series/
Other:
- Are sedenions and higher useful for anything?
- https://mathstodon.xyz/@pschwahn/113388126188923908
- Tambara functors, https://arxiv.org/abs/2410.23052
- 2-vector spaces
-
2-term chain complexes. They form a 2-category and middle-four exchange holds, the proof using the fact that we have
\[ h_{1}\circ \alpha +\beta \circ g_{2}=k_{1}\circ \alpha +\beta \circ f_{2}, \]
which uses the chain homotopy identities
\begin{align*} d_{V}\circ \alpha & = g_{2}-f_{2},\\ -\beta \circ d_{V} & = h_{1}-k_{1}. \end{align*}Can we modify this to work for usual chain complexes, seeking an answer to https://mathoverflow.net/questions/424268? What seems to make things go wrong in that case is that the chain homotopy identities are replaced with
\begin{align*} \alpha _{n+1}\circ d^{V}_{n}+d^{W}_{n-1}\circ \alpha _{n} & = g_{n}-f_{n},\\ \beta _{n+1}\circ d^{V}_{n}+d^{W}_{n-1}\circ \beta _{n} & = k_{n}-h_{n}. \end{align*} - https://arxiv.org/abs/1402.2600
- https://grossack.site/blog
- Classifying space of $\mathbb {Q}_{p}$
- https://www.valth.eu/proc.htm
-
Construction of $\mathbb {R}$ via slopes:
- http://maths.mq.edu.au/~street/EffR.pdf
- https://arxiv.org/abs/math/0301015
- Pierre Colmez’s comment “Et si on remplace $\mathbb {Z}$ par $\mathbb {Q}$, on obtient les adèles.”
- I wonder if one could apply an analogue of this construction to the sphere spectrum and obtain a kind of spectral version of the real numbers, as in e.g. following the spirit of https://mathoverflow.net/questions/443018.
- https://arxiv.org/abs/2406.04936
- https://mathoverflow.net/a/471510
- https://mathoverflow.net/questions/279478/the-category-theory-of-span-enriched-categories-2-segal-spaces/448523#448523
- The works of David Kern, https://dskern.github.io/writings
- https://qchu.wordpress.com/
- https://aroundtoposes.com/
- https://ncatlab.org/nlab/show/essentially+surjective+and+full+functor
- https://mathoverflow.net/questions/415363/objects-whose-representable-presheaf-is-a-fibration
- https://mathoverflow.net/questions/460146/universal-property-of-isbell-duality
- http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html ( Isbell conjugacy and the reflexive completion )
- https://ncatlab.org/nlab/show/enrichment+versus+internalisation
- The works of Philip Saville, https://philipsaville.co.uk/
- https://golem.ph.utexas.edu/category/2024/02/from_cartesian_to_symmetric_mo.html
- https://mathoverflow.net/q/463855 (One-object lax transformations)
- https://ncatlab.org/nlab/show/analytic+completion+of+a+ring
- https://en.wikipedia.org/wiki/Quaternionic_analysis
- https://arxiv.org/abs/2401.15051 (The Norm Functor over Schemes)
- https://mathoverflow.net/questions/407291/ (Adjunctions with respect to profunctors)
- https://mathoverflow.net/a/462726 ($\mathsf{Prof}$ is free completion of $\mathsf{Cats}$ under right extensions)
- there’s some cool stuff in https://arxiv.org/abs/2312.00990 (Polynomial Functors: A Mathematical Theory of Interaction), e.g. on cofunctors.
- https://ncatlab.org/nlab/show/adjoint+lifting+theorem
- https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+duality
General TODO:
- Browse MO questions/answers for interesting ideas/topics
- Change Longrightarrow to Rightarrow where appropriate
- Try to minimize the amount of footnotes throughout the project. There should be no long footnotes.