The basic analogies between set theory and category theory are summarised in the following table:

Set Theory Category Theory
Enrichment in $\{ \mathsf{true},\mathsf{false}\} $ Enrichment in $\mathsf{Sets}$
Set $X$ Category $\mathcal{C}$
Element $x\in X$ Object $X\in \text{Obj}\webleft (\mathcal{C}\webright )$
Function Functor
Function $X\to \{ \mathsf{true},\mathsf{false}\} $ Copresheaf $\mathcal{C}\to \mathsf{Sets}$
Function $X\to \{ \mathsf{true},\mathsf{false}\} $ Presheaf $\mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: