The category of presheaves $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ and the category of copresheaves $\mathsf{CoPSh}\webleft (\mathcal{C}\webright )$ on a category $\mathcal{C}$ are the 1-categorical counterparts to the powerset $\mathcal{P}\webleft (X\webright )$ of subsets of a set $X$. The further analogies built upon this are summarised in the following table:

Set Theory Category Theory
Powerset $\mathcal{P}\webleft (X\webright )$
(Chapter 2: Constructions With Sets, Definition 2.4.1.1.1)
Presheaf category $\mathsf{PSh}\webleft (\mathcal{C}\webright )$
(, )
Characteristic function
$\chi _{x}\colon X\to \{ \mathsf{t},\mathsf{f}\} $
(Chapter 2: Constructions With Sets, )
Representable Presheaf
$h_{X}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$
(, of )
Characteristic embedding

$\chi _{\webleft (-\webright )}\colon X\hookrightarrow \mathcal{P}\webleft (X\webright )$

(Chapter 2: Constructions With Sets, of )
Yoneda embedding

${\text{よ}}\colon \mathcal{C}\hookrightarrow \mathsf{PSh}\webleft (\mathcal{C}\webright )$

(, )
Characteristic relation $\chi _{X}\webleft (-_{1},-_{2}\webright )\colon X\times X\to \{ \mathsf{t},\mathsf{f}\} $
(Chapter 2: Constructions With Sets, of )
$\textup{Hom}$ profunctor $\textup{Hom}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )\colon \mathcal{C}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets}$
()
The Yoneda lemma for sets

$\textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},\chi _{U}\webright )\cong \chi _{U}\webleft (x\webright )$

(Chapter 2: Constructions With Sets, Proposition 2.5.5.1.1)
The Yoneda lemma for categories

$\text{Nat}\webleft (h_{X},\mathcal{F}\webright )\cong \mathcal{F}\webleft (X\webright )$

(, )
The characteristic
embedding is fully faithful,

$\textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},\chi _{y}\webright )\cong \chi _{X}\webleft (x,y\webright )$

(Chapter 2: Constructions With Sets, Corollary 2.5.5.1.2)
The Yoneda
embedding is fully faithful,

$\text{Nat}\webleft (h_{X},h_{Y}\webright )\cong \textup{Hom}_{\mathcal{C}}\webleft (X,Y\webright )$

(, of )
Subsets are unions
of their elements,

$\displaystyle U=\bigcup _{x\in U}\webleft\{ x\webright\} $
or
$\displaystyle \chi _{U}=\mkern -18mu\operatorname*{\text{colim}}_{\chi _{x}\in \mathsf{Sets}\webleft (U,\{ \mathsf{t},\mathsf{f}\} \webright )}\webleft (\chi _{x}\webright )$

Presheaves are colimits
of representables,

$\displaystyle \mathcal{F}\cong \operatorname*{\text{colim}}_{h_{X}\in \int _{\mathcal{C}}\mathcal{F}}\webleft (h_{X}\webright )$

()


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: