We summarise the analogies between un/straightening in set theory and category theory in the following table:

Set Theory Category Theory
Assignment $U\mapsto \chi _{U}$ Assignment $\mathcal{F}\mapsto \int _{\mathcal{C}}\mathcal{F}$
(the category
of elements)
Un/straightening isomorphism
$\mathcal{P}\webleft (X\webright )\cong \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$

(Chapter 2: Constructions With Sets, of )
Un/straightening equivalence
$\mathsf{PSh}\webleft (\mathcal{C}\webright )\mathrel {\smash {\overset {\scriptscriptstyle \text{eq.}}\cong }}\mathsf{DFib}\webleft (\mathcal{C}\webright )$

()


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: