We summarise the analogies between functions $\mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright )$ and functors $\mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$ in the following table:

Set Theory Category Theory
Direct image function

$f_{*}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright )$

(Chapter 2: Constructions With Sets, Definition 2.6.1.1.1)
Direct image functor

$F_{*}\colon \mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$

()
Inverse image function

$f^{-1}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright )$

(Chapter 2: Constructions With Sets, Definition 2.6.2.1.1)
Inverse image functor

$F^{*}\colon \mathsf{PSh}\webleft (\mathcal{D}\webright )\to \mathsf{PSh}\webleft (\mathcal{C}\webright )$

()
Direct image with
compact support function

$f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright )$

(Chapter 2: Constructions With Sets, Definition 2.6.3.1.1)
Direct image with
compact support functor

$F_{!}\colon \mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$

()


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: