We summarise the analogies between functions relations and profunctors in the following table:

Set Theory Category Theory
Relation

$R\colon X\times Y\to \{ \mathsf{t},\mathsf{f}\} $

Profunctor

$\mathfrak {p}\colon \mathcal{D}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets}$

Relation

$R\colon X\to \mathcal{P}\webleft (Y\webright )$

Profunctor

$\mathfrak {p}\colon \mathcal{C}\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$

Relation as a cocontinuous
morphism of posets

$R\colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright )$

Profunctor as a
colimit-preserving functor

$\mathfrak {p}\colon \mathsf{PSh}\webleft (\mathcal{C}\webright )\to \mathsf{PSh}\webleft (\mathcal{D}\webright )$


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: