• Functoriality II. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}^{-1}\colon \mathsf{Sets}^{\mathsf{op}}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}^{-1}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}^{-1}_{A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (B\webright ),\mathcal{P}\webleft (A\webright )\webright ) \]

      of $\mathcal{P}^{-1}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}^{-1}\webleft (f\webright )\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]

      defined by

      \[ \mathcal{P}^{-1}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}, \]

      as in Definition 2.6.2.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: