• The Dualisation Functor. We have a functor
    \[ D_{X}\colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ) \]

    given by

    \begin{align*} D_{X}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,\text{Ø}\webright ]_{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}} \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$, as in Item 5 of Proposition 2.4.7.1.3, satisfying the following conditions:

    1. Duality. We have
    2. Duality. The diagram

      commutes, i.e. we have

      \[ \underbrace{D_{X}\webleft (U\cap D_{X}\webleft (V\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U\cap \webleft [V,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=\webleft [U,V\webright ]_{X} \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    3. Interaction With Direct Images. The diagram

      commutes, i.e. we have

      \[ f_{*}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{!}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    4. Interaction With Inverse Images. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (D_{Y}\webleft (U\webright )\webright )=D_{X}\webleft (f^{-1}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    5. Interaction With Direct Images With Compact Support. The diagram

      commutes, i.e. we have

      \[ f_{!}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{*}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: