The free pointed set on $X$ is the pointed set $\smash {X^{+}}$ consisting of:

  • The Underlying Set. The set $X^{+}$ defined by1
    \begin{align*} X^{+} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\text{pt}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft\{ \star \webright\} . \end{align*}

  • The Basepoint. The element $\star $ of $X^{+}$.


1Further Notation: We sometimes write $\star _{X}$ for the basepoint of $X^{+}$ for clarity, specially when there are multiple free pointed sets involved in the current discussion.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: