Let $X$ be a set.
-
Functoriality. The assignment $X\mapsto X^{+}$ defines a functor
\[ \webleft (-\webright )^{+} \colon \mathsf{Sets}\to \mathsf{Sets}_{*}, \]
where
- Action on Objects. For each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
\[ \webleft [\webleft (-\webright )^{+}\webright ]\webleft (X\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{+}, \]
where $X^{+}$ is the pointed set of Definition 4.4.1.1.1;
- Action on Morphisms. For each morphism $f\colon X\to Y$ of $\mathsf{Sets}$, the image
\[ f^{+}\colon X^{+}\to Y^{+} \]
of $f$ by $\webleft (-\webright )^{+}$ is the map of pointed sets defined by
\[ f^{+}\webleft (x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} f\webleft (x\webright ) & \text{if $x\in X$,}\\ \star _{Y} & \text{if $x=\star _{X}$.} \end{cases} \]
- Action on Objects. For each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
-
Adjointness. We have an adjunction witnessed by a bijection of sets
\begin{align*} \mathsf{Sets}_{*}\webleft (\webleft (X^{+},\star _{X}\webright ),\webleft (Y,y_{0}\webright )\webright )\cong \mathsf{Sets}\webleft (X,Y\webright ),\end{align*}
natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.
-
Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure
\[ \webleft (\webleft (-\webright )^{+},\webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}\webright ) \to \webleft (\mathsf{Sets}_{*},\vee ,\text{pt}\webright ), \]
being equipped with isomorphisms of pointed sets
\[ \begin{gathered} \webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon X^{+}\vee Y^{+} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )^{+},\\ \webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}} \colon \text{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{Ø}^{+}, \end{gathered} \]natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.
-
Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure
\[ \webleft (\webleft (-\webright )^{+},\webleft (-\webright )^{+,\times },\webleft (-\webright )^{+,\times }_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets}_{*},\wedge ,S^{0}\webright ), \]
being equipped with isomorphisms of pointed sets
\[ \begin{gathered} \webleft (-\webright )^{+,\times }_{X,Y} \colon X^{+}\wedge Y^{+} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\times Y\webright )^{+},\\ \webleft (-\webright )^{+,\times }_{\mathbb {1}} \colon S^{0} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{pt}^{+}, \end{gathered} \]natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.