3.4.1 Free Pointed Sets

Let $X$ be a set.

The free pointed set on $X$ is the pointed set $\smash {X^{+}}$ consisting of:

  • The Underlying Set. The set $X^{+}$ defined by[1]

    \begin{align*} X^{+} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\text{pt}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft\{ \star \webright\} . \end{align*}

  • The Basepoint. The element $\star $ of $X^{+}$.

Let $X$ be a set.

  1. Functoriality. The assignment $X\mapsto X^{+}$ defines a functor
    \[ \webleft (-\webright )^{+} \colon \mathsf{Sets}\to \mathsf{Sets}_{*}, \]

    where

    • Action on Objects. For each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \webleft [\webleft (-\webright )^{+}\webright ]\webleft (X\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{+}, \]

      where $X^{+}$ is the pointed set of Definition 3.4.1.1.1;

    • Action on Morphisms. For each morphism $f\colon X\to Y$ of $\mathsf{Sets}$, the image

      \[ f^{+}\colon X^{+}\to Y^{+} \]

      of $f$ by $\webleft (-\webright )^{+}$ is the map of pointed sets defined by

      \[ f^{+}\webleft (x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} f\webleft (x\webright ) & \text{if $x\in X$,}\\ \star _{Y} & \text{if $x=\star _{X}$.} \end{cases} \]

  2. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \begin{align*} \mathsf{Sets}_{*}\webleft (\webleft (X^{+},\star _{X}\webright ),\webleft (Y,y_{0}\webright )\webright )\cong \mathsf{Sets}\webleft (X,Y\webright ),\end{align*}

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\webleft (-\webright )^{+},\webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \to \webleft (\mathsf{Sets}_{*},\vee ,\text{pt}\webright ), \]

    being equipped with isomorphisms of pointed sets

    \[ \begin{gathered} \webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon X^{+}\vee Y^{+} \xrightarrow {\cong }\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )^{+},\\ \webleft (-\webright )^{+,\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\emptyset ^{+}, \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\webleft (-\webright )^{+},\webleft (-\webright )^{+,\times },\webleft (-\webright )^{+,\times }_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets}_{*},\wedge ,S^{0}\webright ), \]

    being equipped with isomorphisms of pointed sets

    \[ \begin{gathered} \webleft (-\webright )^{+,\times }_{X,Y} \colon X^{+}\wedge Y^{+} \xrightarrow {\cong }\webleft (X\times Y\webright )^{+},\\ \webleft (-\webright )^{+,\times }_{\mathbb {1}} \colon S^{0} \xrightarrow {\cong }\text{pt}^{+}, \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness
We claim there’s an adjunction $\webleft (-\webright )^{+}\dashv {\text{忘}}$, witnessed by a bijection of sets

\begin{align*} \mathsf{Sets}_{*}\webleft (\webleft (X^{+},\star _{X}\webright ),\webleft (Y,y_{0}\webright )\webright )\cong \mathsf{Sets}\webleft (X,Y\webright ),\end{align*}

natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  • Map I. We define a map

    \[ \Phi _{X,Y}\colon \mathsf{Sets}_{*}\webleft (\webleft (X^{+},\star _{X}\webright ),\webleft (Y,y_{0}\webright )\webright )\to \mathsf{Sets}\webleft (X,Y\webright ) \]

    by sending a pointed function

    \[ \xi \colon \webleft (X^{+},\star _{X}\webright )\to \webleft (Y,y_{0}\webright ) \]

    to the function

    \[ \xi ^{\dagger }\colon X\to Y \]

    given by

    \[ \xi ^{\dagger }\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (x\webright ) \]

    for each $x\in X$.

  • Map II. We define a map

    \[ \Psi _{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright )\to \mathsf{Sets}_{*}\webleft (\webleft (X^{+},\star _{X}\webright ),\webleft (Y,y_{0}\webright )\webright ) \]

    given by sending a function $\xi \colon X\to Y$ to the pointed function

    \[ \xi ^{\dagger }\colon \webleft (X^{+},\star _{X}\webright )\to \webleft (Y,y_{0}\webright ) \]

    defined by

    \[ \xi ^{\dagger }\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \xi \webleft (x\webright ) & \text{if $x\in X$,}\\ y_{0} & \text{if $x=\star _{X}$} \end{cases} \]

    for each $x\in X^{+}$.

  • Invertibility I. We claim that

    \[ \Psi _{X,Y}\circ \Phi _{X,Y}=\text{id}_{\mathsf{Sets}_{*}\webleft (\webleft (X^{+},\star _{X}\webright ),\webleft (Y,y_{0}\webright )\webright )}, \]

    which is clear.

  • Invertibility II. We claim that

    \[ \Phi _{X,Y}\circ \Psi _{X,Y}=\text{id}_{\mathsf{Sets}\webleft (X,Y\webright )}, \]

    which is clear.

  • Naturality for $\Phi $, Part I. We need to show that, given a pointed function $g\colon \webleft (Y,y_{0}\webright )\to \webleft (Y',y'_{0}\webright )$, the diagram

    commutes. Indeed, given a pointed function

    \[ \xi ^{\dagger }\colon \webleft (X^{+},\star _{X}\webright )\to \webleft (Y,y_{0}\webright ) \]

    we have

    \begin{align*} \webleft [\Phi _{X,Y'}\circ g_{*}\webright ]\webleft (\xi \webright ) & = \Phi _{X,Y'}\webleft (g_{*}\webleft (\xi \webright )\webright )\\ & = \Phi _{X,Y'}\webleft (g\circ \xi \webright )\\ & = g\circ \xi \\ & = g\circ \Phi _{X,Y'}\webleft (\xi \webright )\\ & = g_{*}\webleft (\Phi _{X,Y'}\webleft (\xi \webright )\webright )\\ & = \webleft [g_{*}\circ \Phi _{X,Y'}\webright ]\webleft (\xi \webright ). \end{align*}

  • Naturality for $\Phi $, Part II. We need to show that, given a pointed function $f\colon \webleft (X,x_{0}\webright )\to \webleft (X',x'_{0}\webright )$, the diagram

    commutes. Indeed, given a function

    \[ \xi \colon X'\to Y, \]

    we have

    \begin{align*} \webleft [\Phi _{X,Y}\circ f^{*}\webright ]\webleft (\xi \webright ) & = \Phi _{X,Y}\webleft (f^{*}\webleft (\xi \webright )\webright )\\ & = \Phi _{X,Y}\webleft (\xi \circ f\webright )\\ & = \xi \circ f\\ & = \Phi _{X',Y}\webleft (\xi \webright )\circ f\\ & = f^{*}\webleft (\Phi _{X',Y}\webleft (\xi \webright )\webright )\\ & = f^{*}\webleft (\Phi _{X',Y}\webleft (\xi \webright )\webright )\\ & = \webleft [f^{*}\circ \Phi _{X',Y}\webright ]\webleft (\xi \webright ). \end{align*}

  • Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 8: Categories, Item 2 of Proposition 8.8.6.1.2 that $\Psi $ is also natural in each argument.
Item 3: Symmetric Strong Monoidality With Respect to Wedge Sums
The isomorphism
\[ \phi \colon X^{+}\vee Y^{+}\xrightarrow {\cong }\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )^{+} \]

is given by

\[ \phi \webleft (z\webright )=\begin{cases} x & \text{if $z=\webleft [\webleft (0,x\webright )\webright ]$ with $x\in X$,}\\ y & \text{if $z=\webleft [\webleft (1,y\webright )\webright ]$ with $y\in Y$,}\\ \star _{X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y} & \text{if $z=\webleft [\webleft (0,\star _{X}\webright )\webright ]$,}\\ \star _{X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y} & \text{if $z=\webleft [\webleft (1,\star _{Y}\webright )\webright ]$}\end{cases} \]

for each $z\in X^{+}\vee Y^{+}$, with inverse

\[ \phi ^{-1} \colon \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )^{+} \xrightarrow {\cong }X^{+}\vee Y^{+} \]

given by

\[ \phi ^{-1}\webleft (z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \webleft [\webleft (0,x\webright )\webright ] & \text{if $z=\webleft [\webleft (0,x\webright )\webright ]$,}\\ \webleft [\webleft (0,y\webright )\webright ] & \text{if $z=\webleft [\webleft (1,y\webright )\webright ]$,}\\ p_{0} & \text{if $z=\star _{X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y}$} \end{cases} \]

for each $z\in \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )^{+}$.

Meanwhile, the isomorphism $\text{pt}\cong \emptyset ^{+}$ is given by sending $\star _{X}$ to $\star _{\emptyset }$.

That these isomorphisms satisfy the coherence conditions making the functor $\webleft (-\webright )^{+}$ symmetric strong monoidal can be directly checked element by element.

Item 4: Symmetric Strong Monoidality With Respect to Smash Products
The isomorphism
\[ \phi \colon X^{+}\wedge Y^{+}\xrightarrow {\cong }\webleft (X\times Y\webright )^{+} \]

is given by

\[ \phi \webleft (x\wedge y\webright )=\begin{cases} \webleft (x,y\webright ) & \text{if $x\neq \star _{X}$ and $y\neq \star _{Y}$}\\ \star _{X\times Y} & \text{otherwise}\end{cases} \]

for each $x\wedge y\in X^{+}\wedge Y^{+}$, with inverse

\[ \phi ^{-1} \colon \webleft (X\times Y\webright )^{+} \xrightarrow {\cong }X^{+}\wedge Y^{+} \]

given by

\[ \phi ^{-1}\webleft (z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} x\wedge y & \text{if $z=\webleft (x,y\webright )$ with $\webleft (x,y\webright )\in X\times Y$,}\\ \star _{X}\wedge \star _{Y} & \text{if $z=\star _{X\times Y}$,}\\ \end{cases} \]

for each $z\in \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )^{+}$.

Meanwhile, the isomorphism $S^{0}\cong \text{pt}^{+}$ is given by sending $\star $ to $1\in S^{0}=\webleft\{ 0,1\webright\} $ and $\star _{\text{pt}}$ to $0\in S^{0}$.

That these isomorphisms satisfy the coherence conditions making the functor $\webleft (-\webright )^{+}$ symmetric strong monoidal can be directly checked element by element.


Footnotes

[1] Further Notation: We sometimes write $\star _{X}$ for the basepoint of $X^{+}$ for clarity when there are multiple free pointed sets involved in the current discussion.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: