The universal property of Definition 5.2.2.1.1 is equivalent to the following one:

  • We have a bijection

    \[ \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright ) \cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright ), \]

    natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where $\mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright )$ is the set defined by

    \[ \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \mathsf{Sets}\webleft (A\times K,X\webright )\ \middle |\ \begin{aligned} & \text{for each $a\in A$, we}\\ & \text{have $f\webleft (a,k_{0}\webright )=x_{0}$}\end{aligned} \webright\} . \]

This follows from the bijection

\[ \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright )\cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright ), \]

natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ constructed in the proof of Remark 5.2.1.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: