4.2.2 Cotensors of Pointed Sets by Sets

Let $\webleft (X,x_{0}\webright )$ be a pointed set and let $A$ be a set.

The cotensor of $\webleft (X,x_{0}\webright )$ by $A$[1] is the pointed set[2] $A\pitchfork \webleft (X,x_{0}\webright )$ satisfying the following universal property:

  • We have a bijection

    \[ \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )\cong \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]

    natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

The universal property of Definition 4.2.2.1.1 is equivalent to the following one:

  • We have a bijection

    \[ \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright ) \cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright ), \]

    natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where $\mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright )$ is the set defined by

    \[ \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \mathsf{Sets}\webleft (A\times K,X\webright )\ \middle |\ \begin{aligned} & \text{for each $a\in A$, we}\\ & \text{have $f\webleft (a,k_{0}\webright )=x_{0}$}\end{aligned} \webright\} . \]

This follows from the bijection

\[ \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright )\cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times K,X\webright ), \]

natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ constructed in the proof of Remark 4.2.1.1.2.

Concretely, the cotensor of $\webleft (X,x_{0}\webright )$ by $A$ is the pointed set $A\pitchfork \webleft (X,x_{0}\webright )$ consisting of:

  • The Underlying Set. The set $A\pitchfork X$ given by

    \[ A\pitchfork X\cong \bigwedge _{a\in A}\webleft (X,x_{0}\webright ), \]

    where $\bigwedge _{a\in A}\webleft (X,x_{0}\webright )$ is the smash product of the $A$-indexed family $\webleft (\webleft (X,x_{0}\webright )\webright )_{a\in A}$ of Definition 4.6.1.1.1.

  • The Basepoint. The point $\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]=\webleft [\webleft (x_{0},x_{0},x_{0},\ldots \webright )\webright ]$ of $\bigwedge _{a\in A}\webleft (X,x_{0}\webright )$.

We claim we have a bijection

\[ \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )\cong \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]

natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  • Map I. We define a map

    \[ \Phi _{K}\colon \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )\to \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]

    by sending a morphism of pointed sets

    \[ \xi \colon \webleft (K,k_{0}\webright )\to \webleft (A\pitchfork X,\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]\webright ) \]

    to the map of sets

    where

    \[ \xi _{a}\colon \webleft (K,k_{0}\webright )\to \webleft (X,x_{0}\webright ) \]

    is the morphism of pointed sets defined by

    \[ \xi _{a}\webleft (k\webright )=\begin{cases} x^{k}_{a} & \text{if $\xi \webleft (k\webright )\neq \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$,}\\ x_{0} & \text{if $\xi \webleft (k\webright )=\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$}\end{cases} \]

    for each $k\in K$, where $x^{k}_{a}$ is the $a$th component of $\xi \webleft (k\webright )=\webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]$. Note that:

    1. The definition of $\xi _{a}\webleft (k\webright )$ is independent of the choice of equivalence class. Indeed, suppose we have
      \begin{align*} \xi \webleft (k\webright ) & = \webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]\\ & = \webleft [\webleft (y^{k}_{a}\webright )_{a\in A}\webright ] \end{align*}

      with $x^{k}_{a}\neq y^{k}_{a}$ for some $a\in A$. Then there exist $a_{x},a_{y}\in A$ such that $x^{k}_{a_{x}}=y^{k}_{a_{y}}=x_{0}$. The equivalence relation $\mathord {\sim }$ on $\prod _{a\in A}X$ then forces

      \begin{align*} \webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ] & = \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ],\\ \webleft [\webleft (y^{k}_{a}\webright )_{a\in A}\webright ] & = \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ], \end{align*}

      however, and $\xi _{a}\webleft (k\webright )$ is defined to be $x_{0}$ in this case.

    2. The map $\xi _{a}$ is indeed a morphism of pointed sets, as we have
      \[ \xi _{a}\webleft (k_{0}\webright )=x_{0} \]

      since $\xi \webleft (k_{0}\webright )=\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$ as $\xi $ is a morphism of pointed sets and $\xi _{a}\webleft (k_{0}\webright )$, defined to be the $a$th component of $\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$, is equal to $x_{0}$.

  • Map II. We define a map

    \[ \Psi _{K}\colon \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright )\to \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright ), \]

    given by sending a map

    to the morphism of pointed sets

    \[ \xi ^{\dagger }\colon \webleft (K,k_{0}\webright )\to \webleft (A\pitchfork X,\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]\webright ) \]

    defined by

    \[ \xi ^{\dagger }\webleft (k\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\xi _{a}\webleft (k\webright )\webright )_{a\in A}\webright ] \]

    for each $k\in K$. Note that $\xi ^{\dagger }$ is indeed a morphism of pointed sets, as we have

    \begin{align*} \xi ^{\dagger }\webleft (k_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\xi _{a}\webleft (k_{0}\webright )\webright )_{a\in A}\webright ]\\ & = x_{0}, \end{align*}

    where we have used that $\xi _{a}\in \mathsf{Sets}_{*}\webleft (K,X\webright )$ is a morphism of pointed sets for each $a\in A$.

  • Naturality of $\Psi $. We need to show that, given a morphism of pointed sets

    \[ \phi \colon \webleft (K,k_{0}\webright )\to \webleft (K',k'_{0}\webright ), \]

    the diagram

    commutes. Indeed, given a map of sets

    we have

    \begin{align*} \webleft [\Psi _{K}\circ \webleft (\phi ^{*}\webright )_{*}\webright ]\webleft (\xi \webright ) & = \Psi _{K}\webleft (\webleft (\phi ^{*}\webright )_{*}\webleft (\xi \webright )\webright )\\ & = \Psi _{K}\webleft (\webleft (\phi ^{*}\webright )_{*}\webleft ([\mspace {-3mu}[a\mapsto \xi _{a}]\mspace {-3mu}]\webright )\webright )\\ & = \Psi _{K}\webleft (\webleft ([\mspace {-3mu}[a\mapsto \phi ^{*}\webleft (\xi _{a}\webright )]\mspace {-3mu}]\webright )\webright )\\ & = \Psi _{K}\webleft (\webleft ([\mspace {-3mu}[a\mapsto [\mspace {-3mu}[k\mapsto \xi _{a}\webleft (\phi \webleft (k\webright )\webright )]\mspace {-3mu}]]\mspace {-3mu}]\webright )\webright )\\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (\xi _{a}\webleft (\phi \webleft (k\webright )\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}]\\ & = \phi ^{*}\webleft ([\mspace {-3mu}[k'\mapsto \webleft [\webleft (\xi _{a}\webleft (k'\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}]\webright )\\ & = \phi ^{*}\webleft (\Psi _{K'}\webleft (\xi \webright )\webright )\\ & = \webleft [\phi ^{*}\circ \Psi _{K'}\webright ]\webleft (\xi \webright ). \end{align*}

  • Naturality of $\Phi $. Since $\Psi $ is natural and $\Psi $ is a componentwise inverse to $\Phi $, it follows from Chapter 8: Categories, Item 2 of Proposition 8.8.6.1.2 that $\Phi $ is also natural.
  • Invertibility I. We claim that

    \[ \Psi _{K}\circ \Phi _{K}=\text{id}_{\mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )}. \]

    Indeed, given a morphism of pointed sets

    \[ \xi \colon \webleft (K,k_{0}\webright )\to \webleft (A\pitchfork X,\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]\webright ) \]

    we have

    \begin{align*} \webleft [\Psi _{K}\circ \Phi _{K}\webright ]\webleft (\xi \webright ) & = \Psi _{K}\webleft (\Phi _{K}\webleft (\xi \webright )\webright )\\ & = \Psi _{K}\webleft ([\mspace {-3mu}[a\mapsto \xi _{a}]\mspace {-3mu}]\webright )\\ & = \Psi _{K}\webleft ([\mspace {-3mu}[a'\mapsto \xi _{a'}]\mspace {-3mu}]\webright )\\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (\mathrm{ev}_{a}\webleft ([\mspace {-3mu}[a'\mapsto \xi _{a'}\webleft (k\webright )]\mspace {-3mu}]\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (\xi _{a}\webleft (k\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}].\end{align*}

    Now, we have two cases:

    1. If $\xi \webleft (k\webright )=\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$, we have
      \begin{align*} \webleft [\Psi _{K}\circ \Phi _{K}\webright ]\webleft (\xi \webright ) & = \cdots \\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (\xi _{a}\webleft (k\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \xi \webleft (k\webright )]\mspace {-3mu}]\\ & = \xi .\end{align*}
    2. If $\xi \webleft (k\webright )\neq \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$ and $\xi \webleft (k\webright )=\webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]$ instead, we have
      \begin{align*} \webleft [\Psi _{K}\circ \Phi _{K}\webright ]\webleft (\xi \webright ) & = \cdots \\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (\xi _{a}\webleft (k\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \xi \webleft (k\webright )]\mspace {-3mu}]\\ & = \xi .\end{align*}

    In both cases, we have $\webleft [\Psi _{K}\circ \Phi _{K}\webright ]\webleft (\xi \webright )=\xi $, and thus we are done.

  • Invertibility II. We claim that

    \[ \Phi _{K}\circ \Psi _{K}=\text{id}_{\mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright )}. \]

    Indeed, given a morphism $\xi \colon A\to \mathsf{Sets}_{*}\webleft (K,X\webright )$, we have

    \begin{align*} \webleft [\Phi _{K}\circ \Psi _{K}\webright ]\webleft (\xi \webright ) & = \Phi _{K}\webleft (\Psi _{K}\webleft (\xi \webright )\webright )\\ & = \Phi _{K}\webleft ([\mspace {-3mu}[k\mapsto \webleft [\webleft (\xi _{a}\webleft (k\webright )\webright )_{a\in A}\webright ]]\mspace {-3mu}]\webright )\\ & = [\mspace {-3mu}[a\mapsto [\mspace {-3mu}[k\mapsto \xi _{a}\webleft (k\webright )]\mspace {-3mu}]]\mspace {-3mu}]\\ & = \xi \end{align*}

This finishes the proof.

Let $\webleft (X,x_{0}\webright )$ be a pointed set and let $A$ be a set.

  1. Functoriality. The assignments $A,\webleft (X,x_{0}\webright ),\webleft (A,\webleft (X,x_{0}\webright )\webright )$ define functors
    \begin{gather*} \begin{aligned} A\pitchfork - & \colon \mathsf{Sets}_{*} \to \mathsf{Sets}_{*},\\ -\pitchfork X & \colon \mathsf{Sets}^{\mathsf{op}} \to \mathsf{Sets}_{*}, \end{aligned}\\ -_{1}\pitchfork -_{2} \colon \mathsf{Sets}^{\mathsf{op}}\times \mathsf{Sets}_{*} \to \mathsf{Sets}_{*}. \end{gather*}

    In particular, given:

    • A map of sets $f\colon A\to B$;
    • A pointed map $\phi \colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright )$;
    the induced map

    \[ f\odot \phi \colon A\pitchfork X\to B\pitchfork Y \]

    is given by

    \[ \webleft [f\odot \phi \webright ]\webleft (\webleft [\webleft (x_{a}\webright )_{a\in A}\webright ]\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\phi \webleft (x_{f\webleft (a\webright )}\webright )\webright )_{a\in A}\webright ] \]

    for each $\webleft [\webleft (x_{a}\webright )_{a\in A}\webright ]\in A\pitchfork X$.

  2. Adjointness I. We have an adjunction
    witnessed by a bijection
    \[ \mathsf{Sets}^{\mathsf{op}}_{*}\webleft (A\pitchfork X,K\webright )\cong \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]

    i.e. by a bijection

    \[ \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )\cong \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $X,Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  3. Adjointness II. We have an adjunctions
    witnessed by a bijection
    \[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (A\odot X,Y\webright )\cong \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X,A\pitchfork Y\webright ), \]

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $X,Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  4. As a Weighted Limit. We have
    \[ A\pitchfork X\cong \text{lim}^{\webleft [A\webright ]}\webleft (X\webright ), \]

    where in the right hand side we write:

    • $A$ for the functor $A\colon \text{pt}\to \mathsf{Sets}$ picking $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$;
    • $X$ for the functor $X\colon \text{pt}\to \mathsf{Sets}_{*}$ picking $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  5. Iterated Cotensors. We have an isomorphism of pointed sets
    \[ A\pitchfork \webleft (B\pitchfork X\webright )\cong \webleft (A\times B\webright )\pitchfork X, \]

    natural in $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  6. Commutativity With Homs. We have natural isomorphisms
    \begin{align*} A\pitchfork \mathsf{Sets}_{*}\webleft (X,-\webright ) & \cong \mathsf{Sets}_{*}\webleft (A\odot X,-\webright ),\\ A\pitchfork \mathsf{Sets}_{*}\webleft (-,Y\webright ) & \cong \mathsf{Sets}_{*}\webleft (-,A\pitchfork Y\webright ). \end{align*}
  7. The Cotensor Evaluation Map. For each $X,Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, we have a map
    \[ \mathrm{ev}^{\pitchfork }_{X,Y}\colon X\to \mathsf{Sets}_{*}\webleft (X,Y\webright )\pitchfork Y, \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, and given by

    \[ \mathrm{ev}^{\pitchfork }_{X,Y}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (f\webleft (x\webright )\webright )_{f\in \mathsf{Sets}_{*}\webleft (X,Y\webright )}\webright ] \]

    for each $x\in X$.

  8. The Cotensor Coevaluation Map. For each $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ and each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have a map
    \[ \mathrm{coev}^{\pitchfork }_{A,X}\colon A\to \mathsf{Sets}_{*}\webleft (A\pitchfork X,X\webright ), \]

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ and $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, and given by

    \[ \mathrm{coev}^{\pitchfork }_{A,X}\webleft (a\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[\webleft [\webleft (x_{b}\webright )_{b\in A}\webright ]\mapsto x_{a}]\mspace {-3mu}] \]

    for each $a\in A$.

Item 1: Functoriality
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.
Item 2: Adjointness I
This is simply a rephrasing of Definition 4.2.2.1.1.
Item 3: : Adjointness II
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.
Item 4: As a Weighted Limit
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.
Item 5: Iterated Cotensors
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.
Item 6: Commutativity With Homs
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.
Item 7: The Cotensor Evaluation Map
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.
Item 8: The Cotensor Coevaluation Map
This is the special case of of for when $\mathcal{C}=\mathsf{Sets}_{*}$.


Footnotes

[1] Further Terminology: Also called the power of $\webleft (X,x_{0}\webright )$ by $A$.
[2] Further Notation: Often written $A\pitchfork X$ for simplicity.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: