7.3.11 The Inverse of a Relation

Let $A$, $B$, and $C$ be sets and let $R\subset A\times B$ be a relation.

The inverse of $R$1 is the relation $\smash {R^{\dagger }}$ defined as follows:

  • Viewing relations as subsets, we define
    \[ R^{\dagger } \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft (b,a\webright )\in B\times A\ \middle |\ \text{we have $b\sim _{R}a$}\webright\} . \]

  • Viewing relations as functions $A\times B\to \{ \mathsf{true},\mathsf{false}\} $, we define

    \[ {\webleft [R^{\dagger }\webright ]}{}^{b}_{a} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R^{a}_{b} \]

    for each $\webleft (b,a\webright )\in B\times A$.

  • Viewing relations as functions $A\to \mathcal{P}\webleft (B\webright )$, we define

    \begin{align*} \webleft [R^{\dagger }\webright ]\webleft (b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R^{\dagger }\webleft (\webleft\{ b\webright\} \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ a\in A\ \middle |\ b\in R\webleft (a\webright )\webright\} \end{align*}

    for each $b\in B$, where $R^{\dagger }\webleft (\webleft\{ b\webright\} \webright )$ is the fibre of $R$ over $\webleft\{ b\webright\} $.


1Further Terminology: Also called the opposite of $R$, the transpose of $R$, or the converse of $R$.

Here are some examples of inverses of relations.

  1. Less Than Equal Signs. We have $\webleft (\mathord {\leq }\webright )^{\dagger }=\mathord {\geq }$.
  2. Greater Than Equal Signs. Dually to Item 1, we have $\webleft (\mathord {\geq }\webright )^{\dagger }=\mathord {\leq }$.
  3. Functions. Let $f\colon A\to B$ be a function. We have
    \begin{align*} \text{Gr}\webleft (f\webright )^{\dagger } & = f^{-1},\\ \webleft (f^{-1}\webright )^{\dagger } & = \text{Gr}\webleft (f\webright ). \end{align*}

Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$ be relations.

  1. Functoriality. The assignment $R\mapsto R^{\dagger }$ defines a functor (i.e. morphism of posets)
    \[ \webleft (-\webright )^{\dagger }\colon \mathbf{Rel}\webleft (A,B\webright )\to \mathbf{Rel}\webleft (B,A\webright ). \]

    In particular, given relations $R,S\colon A\mathrel {\rightrightarrows \kern -9.5pt\mathrlap {|}\kern 6pt}B$, we have:

    • If $R\subset S$, then $R^{\dagger }\subset S^{\dagger }$.

  2. Interaction With Ranges and Domains. We have
    \begin{align*} \mathrm{dom}\webleft (R^{\dagger }\webright ) & = \mathrm{range}\webleft (R\webright ),\\ \mathrm{range}\webleft (R^{\dagger }\webright ) & = \mathrm{dom}\webleft (R\webright ). \end{align*}
  3. Interaction With Composition I. We have
    \[ \webleft (S\mathbin {\diamond }R\webright )^{\dagger } = R^{\dagger }\mathbin {\diamond }S^{\dagger }. \]
  4. Interaction With Composition II. We have
    \begin{align*} \chi _{B} & \subset R\mathbin {\diamond }R^{\dagger },\\ \chi _{A} & \subset R^{\dagger }\mathbin {\diamond }R. \end{align*}
  5. Invertibility. We have
    \[ \webleft (R^{\dagger }\webright )^{\dagger } = R. \]
  6. Identity. We have
    \[ \chi ^{\dagger }_{A} = \chi _{A}. \]

Item 1: Functoriality
Clear.
Item 2: Interaction With Ranges and Domains
Clear.
Item 3: Interaction With Composition I
Clear.
Item 4: Interaction With Composition II
Clear.
Item 5: Invertibility
Clear.
Item 6: Identity
Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: