Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$ be relations.

  1. Functoriality. The assignment $R\mapsto R^{\dagger }$ defines a functor (i.e. morphism of posets)
    \[ \webleft (-\webright )^{\dagger }\colon \mathbf{Rel}\webleft (A,B\webright )\to \mathbf{Rel}\webleft (B,A\webright ). \]

    In particular, given relations $R,S\colon A\mathrel {\rightrightarrows \kern -9.5pt\mathrlap {|}\kern 6pt}B$, we have:

    • If $R\subset S$, then $R^{\dagger }\subset S^{\dagger }$.

  2. Interaction With Ranges and Domains. We have
    \begin{align*} \mathrm{dom}\webleft (R^{\dagger }\webright ) & = \mathrm{range}\webleft (R\webright ),\\ \mathrm{range}\webleft (R^{\dagger }\webright ) & = \mathrm{dom}\webleft (R\webright ). \end{align*}
  3. Interaction With Composition I. We have
    \[ \webleft (S\mathbin {\diamond }R\webright )^{\dagger } = R^{\dagger }\mathbin {\diamond }S^{\dagger }. \]
  4. Interaction With Composition II. We have
    \begin{align*} \chi _{B} & \subset R\mathbin {\diamond }R^{\dagger },\\ \chi _{A} & \subset R^{\dagger }\mathbin {\diamond }R. \end{align*}
  5. Invertibility. We have
    \[ \webleft (R^{\dagger }\webright )^{\dagger } = R. \]
  6. Identity. We have
    \[ \chi ^{\dagger }_{A} = \chi _{A}. \]

Item 1: Functoriality
Clear.
Item 2: Interaction With Ranges and Domains
Clear.
Item 3: Interaction With Composition I
Clear.
Item 4: Interaction With Composition II
Clear.
Item 5: Invertibility
Clear.
Item 6: Identity
Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: