11.1.2 Representably Full Morphisms
Let $\mathcal{C}$ be a bicategory.
A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is representably full1 if, for each $X\in \text{Obj}\webleft (\mathcal{C}\webright )$, the functor
\[ f_{*}\colon \mathsf{Hom}_{\mathcal{C}}\webleft (X,A\webright )\to \mathsf{Hom}_{\mathcal{C}}\webleft (X,B\webright ) \]
given by postcomposition by $f$ is full.
Here are some examples of representably full morphisms.
-
Representably Full Morphisms in $\mathsf{Cats}_{\mathsf{2}}$. The representably full morphisms in $\mathsf{Cats}_{\mathsf{2}}$ are precisely the full functors; see Chapter 9: Preorders, of Proposition 9.6.2.1.2.
-
Representably Full Morphisms in $\textbf{Rel}$. The representably full morphisms in $\textbf{Rel}$ are characterised in Chapter 6: Relations, Item 2 of Proposition 6.3.8.1.1.