2.5.4 The Characteristic Embedding of a Set

Let $X$ be a set.

The characteristic embedding1 of $X$ into $\mathcal{P}\webleft (X\webright )$ is the function

\[ \chi _{\webleft (-\webright )}\colon X \hookrightarrow \mathcal{P}\webleft (X\webright ) \]

defined by2

\begin{align*} \chi _{\webleft (-\webright )}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{x}\\ & = \webleft\{ x\webright\} \end{align*}

for each $x\in X$.


1The name “characteristic embedding” is justified by Corollary 2.5.5.1.2, which gives an analogue of fully faithfulness for $\chi _{\webleft (-\webright )}$.
2Here we are identifying $\mathcal{P}\webleft (X\webright )$ with $\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$ as per Item 2 of Proposition 2.5.1.1.4.

Expanding upon Remark 2.5.1.1.2, Remark 2.5.2.1.2, and Remark 2.5.3.1.2, we may view the characteristic embedding

\[ \chi _{\webleft (-\webright )}\colon X\hookrightarrow \mathcal{P}\webleft (X\webright ) \]

of $X$ into $\mathcal{P}\webleft (X\webright )$ as a decategorification of the Yoneda embedding

\[ {\text{よ}}\colon \mathcal{C}^{\mathsf{op}} \hookrightarrow \mathsf{PSh}\webleft (\mathcal{C}\webright ) \]

of a category $\mathcal{C}$ into $\mathsf{PSh}\webleft (\mathcal{C}\webright )$.

Let $f\colon X\to Y$ be a map of sets.

  1. Interaction With Functions. We have

Item 1: Interaction With Functions
Indeed, we have
\begin{align*} \webleft [f_{*}\circ \chi _{X}\webright ]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}\webleft (\chi _{X}\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}\webleft (\webleft\{ x\webright\} \webright )\\ & = \webleft\{ f\webleft (x\webright )\webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{X'}\webleft (f\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\chi _{X'}\circ f\webright ]\webleft (x\webright ),\end{align*}

for each $x\in X$, showing the desired equality.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: