Let $\mathcal{C}$ be a category.
- Extra Monoidality Conditions. Let $\big (\text{id}^{\otimes }_{\mathcal{C}},\text{id}^{\otimes }_{\mathbb {1}|\mathcal{C}}\big )$ be a morphism of $\mathcal{M}_{\mathbb {E}_{1}}\webleft (\mathcal{C}\webright )$ from $\webleft(\phantom{\mathrlap {\lambda ^{\mathcal{C}}}}\mathcal{C}\right.$, $\otimes _{\mathcal{C}}$, $\mathbb {1}_{\mathcal{C}}$, $\alpha ^{\mathcal{C}}$, $\lambda ^{\mathcal{C}}$, $\left.\rho ^{\mathcal{C}}\webright)$ to $\webleft(\phantom{\mathrlap {\lambda ^{\mathcal{C},\prime }}}\mathcal{C}\right.$, $\boxtimes _{\mathcal{C}}$, $\mathbb {1}'_{\mathcal{C}}$, $\alpha ^{\mathcal{C},\prime }$, $\lambda ^{\mathcal{C},\prime }$, $\left.\rho ^{\mathcal{C},\prime }\webright)$.
- Extra Monoidal Unity Constraints. Let $\big (\text{id}^{\otimes }_{\mathcal{C}},\text{id}^{\otimes }_{\mathbb {1}|\mathcal{C}}\big )$ be a morphism of $\mathcal{M}_{\mathbb {E}_{1}}\webleft (\mathcal{C}\webright )$ from $\webleft(\phantom{\mathrlap {\lambda ^{\mathcal{C}}}}\mathcal{C}\right.$, $\otimes _{\mathcal{C}}$, $\mathbb {1}_{\mathcal{C}}$, $\alpha ^{\mathcal{C}}$, $\lambda ^{\mathcal{C}}$, $\left.\rho ^{\mathcal{C}}\webright)$ to $\webleft(\phantom{\mathrlap {\lambda ^{\mathcal{C},\prime }}}\mathcal{C}\right.$, $\boxtimes _{\mathcal{C}}$, $\mathbb {1}'_{\mathcal{C}}$, $\alpha ^{\mathcal{C},\prime }$, $\lambda ^{\mathcal{C},\prime }$, $\left.\rho ^{\mathcal{C},\prime }\webright)$.
-
Mixed Associators. Let $\webleft(\phantom{\mathrlap {\lambda ^{\mathcal{C}}}}\mathcal{C}\right.$, $\otimes _{\mathcal{C}}$, $\mathbb {1}_{\mathcal{C}}$, $\alpha ^{\mathcal{C}}$, $\lambda ^{\mathcal{C}}$, $\left.\rho ^{\mathcal{C}}\webright)$ and $\webleft(\phantom{\mathrlap {\lambda ^{\mathcal{C},\prime }}}\mathcal{C}\right.$, $\boxtimes _{\mathcal{C}}$, $\mathbb {1}'_{\mathcal{C}}$, $\alpha ^{\mathcal{C},\prime }$, $\lambda ^{\mathcal{C},\prime }$, $\left.\rho ^{\mathcal{C},\prime }\webright)$ be monoidal structures on $\mathcal{C}$ and let
\[ \text{id}^{\otimes }_{-_{1},-_{2}}\colon -_{1}\boxtimes _{\mathcal{C}}-_{2}\to -_{1}\otimes _{\mathcal{C}}-_{2} \]
be a natural transformation.
-
If there exists a natural transformation
\[ \alpha ^{\otimes }_{A,B,C}\colon \webleft (A\otimes _{\mathcal{C}}B\webright )\boxtimes _{\mathcal{C}}C\to A\otimes _{\mathcal{C}}\webleft (B\boxtimes _{\mathcal{C}}C\webright ) \]
making the diagrams
and
commute, then the natural transformation $\text{id}^{\otimes }$ satisfies the monoidality condition of Item 2 of Remark 10.1.1.1.3.
-
If there exists a natural transformation
\[ \alpha ^{\boxtimes }_{A,B,C}\colon \webleft (A\boxtimes _{\mathcal{C}}B\webright )\otimes _{\mathcal{C}}C\to A\boxtimes _{\mathcal{C}}\webleft (B\otimes _{\mathcal{C}}C\webright ) \]
making the diagrams
and
commute, then the natural transformation $\text{id}^{\otimes }$ satisfies the monoidality condition of Item 2 of Remark 10.1.1.1.3.
-
If there exists a natural transformation
\[ \alpha ^{\boxtimes ,\otimes }_{A,B,C}\colon \webleft (A\boxtimes _{\mathcal{C}}B\webright )\otimes _{\mathcal{C}}C\to A\otimes _{\mathcal{C}}\webleft (B\boxtimes _{\mathcal{C}}C\webright ) \]
making the diagrams
and
commute, then the natural transformation $\text{id}^{\otimes }$ satisfies the monoidality condition of Item 2 of Remark 10.1.1.1.3.
-
If there exists a natural transformation