2.3.11 Complements

Let $X$ be a set and let $U\in \mathcal{P}\webleft (X\webright )$.

The complement of $U$ is the set $U^{\textsf{c}}$ defined by

\begin{align*} U^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ a\in X\ \middle |\ a\not\in U\webright\} .\end{align*}

Let $X$ be a set.

  1. Functoriality. The assignment $U\mapsto U^{\textsf{c}}$ defines a functor
    \[ \webleft (-\webright )^{\textsf{c}}\colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ), \]

    where

    • Action on Objects. For each $U\in \mathcal{P}\webleft (X\webright )$, we have

      \[ \webleft [\webleft (-\webright )^{\textsf{c}}\webright ]\webleft (U\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}. \]

    • Action on Morphisms. For each morphism $\iota _{U}\colon U\hookrightarrow V$ of $\mathcal{P}\webleft (X\webright )$, the image

      \[ \iota ^{\textsf{c}}_{U}\colon V^{\textsf{c}}\hookrightarrow U^{\textsf{c}} \]

      of $\iota _{U}$ by $\webleft (-\webright )^{\textsf{c}}$ is the inclusion

      \[ V^{\textsf{c}}\subset U^{\textsf{c}} \]

      i.e. where we have

      • If $U\subset V$, then $V^{\textsf{c}}\subset U^{\textsf{c}}$.

  2. De Morgan’s Laws. We have equalities of sets
    \begin{align*} \webleft (U\cup V\webright )^{\textsf{c}} & = U^{\textsf{c}}\cap V^{\textsf{c}},\\ \webleft (U\cap V\webright )^{\textsf{c}} & = U^{\textsf{c}}\cup V^{\textsf{c}} \end{align*}

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  3. Involutority. We have
    \[ \webleft (U^{\textsf{c}}\webright )^{\textsf{c}}=U \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  4. Interaction With Characteristic Functions. We have
    \[ \chi _{U^{\textsf{c}}}=1-\chi _{U} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: