2.3.11 Complements

Let $X$ be a set and let $U\in \mathcal{P}\webleft (X\webright )$.

The complement of $U$ is the set $U^{\textsf{c}}$ defined by

\begin{align*} U^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ a\in X\ \middle |\ a\not\in U\webright\} .\end{align*}

Let $X$ be a set.

  1. Functoriality. The assignment $U\mapsto U^{\textsf{c}}$ defines a functor
    \[ \webleft (-\webright )^{\textsf{c}}\colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ). \]

    In particular, the following statements hold for each $U,V\in \mathcal{P}\webleft (X\webright )$:

    • If $U\subset V$, then $V^{\textsf{c}}\subset U^{\textsf{c}}$.

  2. De Morgan’s Laws. The diagrams
    commute, i.e. we have equalities of sets
    \begin{align*} \webleft (U\cup V\webright )^{\textsf{c}} & = U^{\textsf{c}}\cap V^{\textsf{c}},\\ \webleft (U\cap V\webright )^{\textsf{c}} & = U^{\textsf{c}}\cup V^{\textsf{c}} \end{align*}

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  3. Involutority. The diagram

    commutes, i.e. we have

    \[ \webleft (U^{\textsf{c}}\webright )^{\textsf{c}}=U \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  4. Interaction With Characteristic Functions. We have
    \[ \chi _{U^{\textsf{c}}}\equiv 1-\chi _{U}\ \ (\mathrm{mod}\ 2) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  5. Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{*}\webleft (U^{\textsf{c}}\webright )=f_{!}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}\webleft (U^{\textsf{c}}\webright )=f^{-1}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Direct Images With Compact Support. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U^{\textsf{c}}\webright )=f_{*}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functoriality
This follows from Item 1 of Proposition 2.3.10.1.2.
Item 2: De Morgan’s Laws
See [Proof Wiki, De Morgan's Laws (Set Theory)].
Item 3: Involutority
See [Proof Wiki, Complement Of Complement].
Item 4: Interaction With Characteristic Functions
Omitted.
Item 5: Interaction With Direct Images
This is a repetition of Item 8 of Proposition 2.6.1.1.4 and is proved there.
Item 6: Interaction With Inverse Images
This is a repetition of Item 8 of Proposition 2.6.2.1.3 and is proved there.

Item 7: Interaction With Direct Images With Compact Support
This is a repetition of Item 7 of Proposition 2.6.3.1.6 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: