Let $U\subset X$ and let $x\in X$.

  1. The characteristic function of $U$[1] is the function[2]
    \[ \chi _{U}\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

    defined by

    \[ \chi _{U}\webleft (x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x\in U$,}\\ \mathsf{false}& \text{if $x\not\in U$} \end{cases} \]

    for each $x\in X$.

  2. The characteristic function of $x$ is the function[3]
    \[ \chi _{x}\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

    defined by

    \[ \chi _{x} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{\webleft\{ x\webright\} }, \]

    i.e. by

    \[ \chi _{x}\webleft (y\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]

    for each $y\in X$.

  3. The characteristic relation on $X$[4] is the relation[5]
    \[ \chi _{X}\webleft (-_{1},-_{2}\webright )\colon X\times X\to \{ \mathsf{t},\mathsf{f}\} \]

    on $X$ defined by[6]

    \[ \chi _{X}\webleft (x,y\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]

    for each $x,y\in X$.

  4. The characteristic embedding[7] of $X$ into $\mathcal{P}\webleft (X\webright )$ is the function
    \[ \chi _{\webleft (-\webright )}\colon X \hookrightarrow \mathcal{P}\webleft (X\webright ) \]

    defined by

    \[ \chi _{\webleft (-\webright )}\webleft (x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{x} \]

    for each $x\in X$.


Footnotes

[1] Further Terminology: Also called the indicator function of $U$.
[2] Further Notation: Also written $\chi _{X}\webleft (U,-\webright )$ or $\chi _{X}\webleft (-,U\webright )$.
[3] Further Notation: Also written $\chi ^{x}$, $\chi _{X}\webleft (x,-\webright )$, or $\chi _{X}\webleft (-,x\webright )$.
[4] Further Terminology: Also called the identity relation on $X$.
[5] Further Notation: Also written $\chi ^{-_{1}}_{-_{2}}$, or $\mathord {\sim }_{\text{id}}$ in the context of relations.
[6] As a subset of $X\times X$, the relation $\chi _{X}$ corresponds to the diagonal $\Delta _{X}\subset X\times X$ of $X$.
[7] The name “characteristic embedding” comes from the fact that there is an analogue of fully faithfulness for $\chi _{\webleft (-\webright )}$: given a set $X$, we have
\[ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},\chi _{y}\webright )=\chi _{X}\webleft (x,y\webright ), \]
for each $x,y\in X$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: