The definitions in Definition 2.4.1.1.1 are decategorifications of co/presheaves, representable co/presheaves, $\textup{Hom}$ profunctors, and the Yoneda embedding:[1]

  1. A function
    \[ f\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

    is a decategorification of a presheaf

    \[ \mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}, \]

    with the characteristic functions $\chi _{U}$ of the subsets of $X$ being the primordial examples (and, in fact, all examples) of these.

  2. The characteristic function
    \[ \chi _{x}\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

    of an element $x$ of $X$ is a decategorification of the representable presheaf

    \[ h_{X}\colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets} \]

    of an object $x$ of a category $\mathcal{C}$.

  3. The characteristic relation
    \[ \chi _{X}\webleft (-_{1},-_{2}\webright )\colon X\times X\to \{ \mathsf{t},\mathsf{f}\} \]

    of $X$ is a decategorification of the $\textup{Hom}$ profunctor

    \[ \textup{Hom}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )\colon \mathcal{C}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets} \]

    of a category $\mathcal{C}$.

  4. The characteristic embedding
    \[ \chi _{\webleft (-\webright )}\colon X\hookrightarrow \mathcal{P}\webleft (X\webright ) \]

    of $X$ into $\mathcal{P}\webleft (X\webright )$ is a decategorification of the Yoneda embedding

    \[ {\text{よ}}\colon \mathcal{C}^{\mathsf{op}} \hookrightarrow \mathsf{PSh}\webleft (\mathcal{C}\webright ) \]

    of a category $\mathcal{C}$ into $\mathsf{PSh}\webleft (\mathcal{C}\webright )$.

  5. There is also a direct parallel between unions and colimits:
    • An element of $\mathcal{P}\webleft (X\webright )$ is a union of elements of $X$, viewed as one-point subsets $\webleft\{ x\webright\} \in \mathcal{P}\webleft (A\webright )$.
    • An object of $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ is a colimit of objects of $\mathcal{C}$, viewed as representable presheaves $h_{X}\in \text{Obj}\webleft (\mathsf{PSh}\webleft (\mathcal{C}\webright )\webright )$.


Footnotes

[1] These statements can be made precise by using the embeddings
\begin{align*} \webleft (-\webright )_{\mathsf{disc}} & \colon \mathsf{Sets}\hookrightarrow \mathsf{Cats},\\ \webleft (-\webright )_{\mathsf{disc}} & \colon \{ \mathsf{t},\mathsf{f}\} _{\mathsf{disc}} \hookrightarrow \mathsf{Sets}\end{align*}
of sets into categories and of classical truth values into sets.

For instance, in this approach the characteristic function
\[ \chi _{x} \colon X \to \{ \mathsf{t},\mathsf{f}\} \]
of an element $x$ of $X$, defined by
\[ \chi _{x}\webleft (y\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]
for each $y\in X$, is recovered as the representable presheaf
\[ \textup{Hom}_{X_{\mathsf{disc}}}\webleft (-,x\webright ) \colon X_{\mathsf{disc}} \to \mathsf{Sets} \]
of the corresponding object $x$ of $X_{\mathsf{disc}}$, defined on objects by
\[ \textup{Hom}_{X_{\mathsf{disc}}}\webleft (y,x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \text{pt}& \text{if $x=y$,}\\ \emptyset & \text{if $x\neq y$} \end{cases} \]
for each $y\in \text{Obj}\webleft (X_{\mathsf{disc}}\webright )$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: