Let $X$ be a set.

  1. Symmetric Strong Monoidality With Respect to Coproducts I. The powerset functor $\mathcal{P}_{*}$ of Item 1 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure
    \[ \webleft (\mathcal{P}_{*},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \xrightarrow {\cong }\mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ),\\ \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  2. Symmetric Strong Monoidality With Respect to Coproducts II. The powerset functor $\mathcal{P}^{-1}$ of Item 2 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure
    \[ \webleft (\mathcal{P}^{-1},\mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets}^{\mathsf{op}},\times ^{\mathsf{op}},\text{pt}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \xrightarrow {\cong }\mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ),\\ \mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  3. Symmetric Strong Monoidality With Respect to Coproducts III. The powerset functor $\mathcal{P}_{!}$ of Item 3 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure
    \[ \webleft (\mathcal{P}_{!},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \xrightarrow {\cong }\mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ),\\ \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!|\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Symmetric Lax Monoidality With Respect to Products I. The powerset functor $\mathcal{P}_{*}$ of Item 1 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure
    \[ \webleft (\mathcal{P}_{*},\mathcal{P}^{\otimes }_{*},\mathcal{P}^{\otimes }_{*|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \]

    being equipped with morphisms

    \[ \begin{gathered} \mathcal{P}^{\times }_{*|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \to \mathcal{P}\webleft (X\times Y\webright ),\\ \mathcal{P}^{\times }_{*|\mathbb {1}} \colon \text{pt}\to \mathcal{P}\webleft (\text{pt}\webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, where

    • The map $\mathcal{P}^{\times }_{*|X,Y}$ is given by

      \[ \mathcal{P}^{\times }_{*|X,Y}\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U\times V \]

      for each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$,

    • The map $\mathcal{P}^{\times }_{*|\mathbb {1}}$ is given by

      \[ \mathcal{P}^{\times }_{*|\mathbb {1}}\webleft (\star \webright )=\text{pt}. \]

  5. Symmetric Lax Monoidality With Respect to Products II. The powerset functor $\mathcal{P}^{-1}$ of Item 2 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure
    \[ \webleft (\mathcal{P}^{-1},\mathcal{P}^{-1|\otimes },\mathcal{P}^{-1|\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets}^{\mathsf{op}},\times ^{\mathsf{op}},\text{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \]

    being equipped with morphisms

    \[ \begin{gathered} \mathcal{P}^{-1|\times }_{X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \to \mathcal{P}\webleft (X\times Y\webright ),\\ \mathcal{P}^{\times }_{\mathbb {1}} \colon \text{pt}\to \mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, defined as in Item 4.

  6. Symmetric Lax Monoidality With Respect to Products III. The powerset functor $\mathcal{P}_{!}$ of Item 3 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure
    \[ \webleft (\mathcal{P}_{!},\mathcal{P}^{\otimes }_{!},\mathcal{P}^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \]

    being equipped with morphisms

    \[ \begin{gathered} \mathcal{P}^{\times }_{!|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \to \mathcal{P}\webleft (X\times Y\webright ),\\ \mathcal{P}^{\times }_{!|\mathbb {1}} \colon \text{pt}\to \mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, defined as in Item 4.

Item 1: Symmetric Strong Monoidality With Respect to Coproducts I
The isomorphism
\[ \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|X,Y}\colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ) \]

is given by sending $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$ to $U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V$, with inverse given by sending a subset $S$ of $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ to the pair $\webleft (S_{X},S_{Y}\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$ with

\begin{align*} S_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \webleft (0,x\webright )\in S\webright\} \\ S_{Y} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ y\in Y\ \middle |\ \webleft (1,y\webright )\in S\webright\} . \end{align*}

The isomorphism $\text{pt}\cong \mathcal{P}\webleft (\emptyset \webright )$ is given by $\star \mapsto \emptyset \in \mathcal{P}\webleft (\emptyset \webright )$.

Naturality for the isomorphism $\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|X,Y}$ is the statement that, given maps of sets $f\colon X\to X'$ and $g\colon Y\to Y'$, the diagram

commutes, which is clear, as it acts on elements as

where we are using Item 7 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of $\mathcal{P}_{*}$ as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.

Item 2: Symmetric Strong Monoidality With Respect to Coproducts II
The proof is similar to Item 1, and is hence omitted.
Item 3: Symmetric Strong Monoidality With Respect to Coproducts III
The proof is similar to Item 1, and is hence omitted.
Item 4: Symmetric Lax Monoidality With Respect to Products I
Naturality for the morphism $\mathcal{P}^{\times }_{*|X,Y}$ is the statement that, given maps of sets $f\colon X\to X'$ and $g\colon Y\to Y'$, the diagram

commutes, which is clear, as it acts on elements as

where we are using Item 8 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of $\mathcal{P}_{*}$ as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.

Item 5: Symmetric Lax Monoidality With Respect to Products II
The proof is similar to Item 4, and is hence omitted.
Item 6: Symmetric Lax Monoidality With Respect to Products III
The proof is similar to Item 4, and is hence omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: