2.4.3 Powersets

Let $X$ be a set.

The powerset of $X$ is the set $\mathcal{P}\webleft (X\webright )$ defined by

\[ \mathcal{P}\webleft (X\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ U\in P\ \middle |\ U\subset X\webright\} , \]

where $P$ is the set in the axiom of powerset, of .

The powerset of a set is a decategorification of the category of presheaves of a category: while[1]

  • The powerset of a set $X$ is equivalently (Item 1 and Item 2 of Proposition 2.4.3.1.6) the set

    \[ \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \]

    of functions from $X$ to the set $\{ \mathsf{t},\mathsf{f}\} $ of classical truth values.

  • The category of presheaves on a category $\mathcal{C}$ is the category

    \[ \mathsf{Fun}\webleft (\mathcal{C}^{\mathsf{op}},\mathsf{Sets}\webright ) \]

    of functors from $\mathcal{C}^{\mathsf{op}}$ to the category $\mathsf{Sets}$ of sets.

Let $X$ be a set.

  1. Co/Completeness. The (posetal) category (associated to) $\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )$ is complete and cocomplete:
    1. Products. The products in $\mathcal{P}\webleft (X\webright )$ are given by intersection of subsets.
    2. Coproducts. The coproducts in $\mathcal{P}\webleft (X\webright )$ are given by union of subsets.
    3. Co/Equalisers. Being a posetal category, $\mathcal{P}\webleft (X\webright )$ only has at most one morphisms between any two objects, so co/equalisers are trivial.
  2. Cartesian Closedness. The category $\mathcal{P}\webleft (X\webright )$ is Cartesian closed with internal Hom
    \[ \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (-_{1},-_{2}\webright )\colon \mathcal{P}\webleft (X\webright )\mkern -0.0mu^{\mathsf{op}}\times \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ) \]

    given by[2]

    \[ \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus U\webright )\cup V \]

    for each $U,V\in \text{Obj}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

Let $X$ be a set.

  1. Functoriality I. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}_{*}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}_{*}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}_{*|A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ) \]

      of $\mathcal{P}_{*}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{*}\webleft (f\webright )\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

      defined by

      \[ \mathcal{P}_{*}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}, \]

      as in Definition 2.4.4.1.1.

  2. Functoriality II. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}^{-1}\colon \mathsf{Sets}^{\mathsf{op}}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}^{-1}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}^{-1}_{A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (B\webright ),\mathcal{P}\webleft (A\webright )\webright ) \]

      of $\mathcal{P}^{-1}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}^{-1}\webleft (f\webright )\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]

      defined by

      \[ \mathcal{P}^{-1}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}, \]

      as in Definition 2.4.5.1.1.

  3. Functoriality III. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}_{!}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}_{!}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}_{!|A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ) \]

      of $\mathcal{P}_{!}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{!}\webleft (f\webright )\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

      defined by

      \[ \mathcal{P}_{!}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}, \]

      as in Definition 2.4.6.1.1.

  4. Adjointness I. We have an adjunction
    witnessed by a bijection
    \[ \underbrace{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (A\webright ),B\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mkern 5mu\mathsf{Sets}\webleft (B,\mathcal{P}\webleft (A\webright )\webright )} \cong \mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright ), \]

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $B\in \text{Obj}\webleft (\mathsf{Sets}^{\mathsf{op}}\webright )$.

  5. Adjointness II. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright ) \cong \mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright ) \]

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $B\in \text{Obj}\webleft (\mathrm{Rel}\webright )$, where $\text{Gr}$ is the graph functor of Chapter 6: Constructions With Relations, Item 1 of Proposition 6.3.1.1.2 and $\mathcal{P}_{*}$ is the functor of Chapter 6: Constructions With Relations, Proposition 6.4.5.1.1.

Item 1: Functoriality I
This follows from Item 3 and Item 4 of Proposition 2.4.4.1.5.
Item 2: Functoriality II
This follows Item 3 and Item 4 of Proposition 2.4.5.1.4.
Item 3: Functoriality III
This follows Item 3 and Item 4 of Proposition 2.4.6.1.7.
Item 4: Adjointness I
We have

$\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (A\webright ),B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\rlap {\mathsf{Sets}\webleft (B,\mathcal{P}\webleft (A\webright )\webright )}\phantom{\mkern 400mu}$

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )}\cong \rlap {\mathsf{Sets}\webleft (B,\mathsf{Sets}\webleft (A,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 400mu}$

(by Item 1 of Proposition 2.4.3.1.6)

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )}\phantom{\mkern 400mu}$

(by Item 2 of Proposition 2.1.3.1.2)

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 400mu}$

(by Item 2 of Proposition 2.1.3.1.2)

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )}\phantom{\mkern 400mu}$

(by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in $A$ and $B$ (where we use Item 2 of Proposition 2.4.3.1.6 here).

Item 5: Adjointness II
We have

$\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\rlap {\mathcal{P}\webleft (A\times B\webright )}\phantom{\mkern 375mu}$

$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )}\phantom{\mkern 375mu}$

(by Item 1 of Proposition 2.4.3.1.6)

$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 375mu}$

(by Item 2 of Proposition 2.1.3.1.2)

$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )}\phantom{\mkern 375mu}$

(by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in $A$ (where we use Item 2 of Proposition 2.4.3.1.6 here). Explicitly, this isomorphism is given by sending a relation $R\colon \text{Gr}\webleft (A\webright )\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ to the map $R^{\dagger }\colon A\to \mathcal{P}\webleft (B\webright )$ sending $a$ to the subset $R\webleft (a\webright )$ of $B$, as in Chapter 5: Relations, Remark 5.1.1.1.4.

Naturality in $B$ is then the statement that given a relation $R\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B'$, the diagram

commutes, which follows from Chapter 6: Constructions With Relations, Remark 6.4.1.1.2.

Let $X$ be a set.

  1. Symmetric Strong Monoidality With Respect to Coproducts I. The powerset functor $\mathcal{P}_{*}$ of Item 1 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure
    \[ \webleft (\mathcal{P}_{*},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \xrightarrow {\cong }\mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ),\\ \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  2. Symmetric Strong Monoidality With Respect to Coproducts II. The powerset functor $\mathcal{P}^{-1}$ of Item 2 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure
    \[ \webleft (\mathcal{P}^{-1},\mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets}^{\mathsf{op}},\times ^{\mathsf{op}},\text{pt}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \xrightarrow {\cong }\mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ),\\ \mathcal{P}^{-1|\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  3. Symmetric Strong Monoidality With Respect to Coproducts III. The powerset functor $\mathcal{P}_{!}$ of Item 3 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure
    \[ \webleft (\mathcal{P}_{!},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!},\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \xrightarrow {\cong }\mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ),\\ \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{!|\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Symmetric Lax Monoidality With Respect to Products I. The powerset functor $\mathcal{P}_{*}$ of Item 1 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure
    \[ \webleft (\mathcal{P}_{*},\mathcal{P}^{\otimes }_{*},\mathcal{P}^{\otimes }_{*|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \]

    being equipped with morphisms

    \[ \begin{gathered} \mathcal{P}^{\times }_{*|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \to \mathcal{P}\webleft (X\times Y\webright ),\\ \mathcal{P}^{\times }_{*|\mathbb {1}} \colon \text{pt}\to \mathcal{P}\webleft (\text{pt}\webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, where

    • The map $\mathcal{P}^{\times }_{*|X,Y}$ is given by

      \[ \mathcal{P}^{\times }_{*|X,Y}\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U\times V \]

      for each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$,

    • The map $\mathcal{P}^{\times }_{*|\mathbb {1}}$ is given by

      \[ \mathcal{P}^{\times }_{*|\mathbb {1}}\webleft (\star \webright )=\text{pt}. \]

  5. Symmetric Lax Monoidality With Respect to Products II. The powerset functor $\mathcal{P}^{-1}$ of Item 2 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure
    \[ \webleft (\mathcal{P}^{-1},\mathcal{P}^{-1|\otimes },\mathcal{P}^{-1|\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets}^{\mathsf{op}},\times ^{\mathsf{op}},\text{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \]

    being equipped with morphisms

    \[ \begin{gathered} \mathcal{P}^{-1|\times }_{X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \to \mathcal{P}\webleft (X\times Y\webright ),\\ \mathcal{P}^{\times }_{\mathbb {1}} \colon \text{pt}\to \mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, defined as in Item 4.

  6. Symmetric Lax Monoidality With Respect to Products III. The powerset functor $\mathcal{P}_{!}$ of Item 3 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure
    \[ \webleft (\mathcal{P}_{!},\mathcal{P}^{\otimes }_{!},\mathcal{P}^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \]

    being equipped with morphisms

    \[ \begin{gathered} \mathcal{P}^{\times }_{!|X,Y} \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \to \mathcal{P}\webleft (X\times Y\webright ),\\ \mathcal{P}^{\times }_{!|\mathbb {1}} \colon \text{pt}\to \mathcal{P}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, defined as in Item 4.

Item 1: Symmetric Strong Monoidality With Respect to Coproducts I
The isomorphism
\[ \mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|X,Y}\colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ) \]

is given by sending $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$ to $U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V$, with inverse given by sending a subset $S$ of $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ to the pair $\webleft (S_{X},S_{Y}\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$ with

\begin{align*} S_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \webleft (0,x\webright )\in S\webright\} \\ S_{Y} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ y\in Y\ \middle |\ \webleft (1,y\webright )\in S\webright\} . \end{align*}

The isomorphism $\text{pt}\cong \mathcal{P}\webleft (\emptyset \webright )$ is given by $\star \mapsto \emptyset \in \mathcal{P}\webleft (\emptyset \webright )$.

Naturality for the isomorphism $\mathcal{P}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{*|X,Y}$ is the statement that, given maps of sets $f\colon X\to X'$ and $g\colon Y\to Y'$, the diagram

commutes, which is clear, as it acts on elements as

where we are using Item 7 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of $\mathcal{P}_{*}$ as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.

Item 2: Symmetric Strong Monoidality With Respect to Coproducts II
The proof is similar to Item 1, and is hence omitted.
Item 3: Symmetric Strong Monoidality With Respect to Coproducts III
The proof is similar to Item 1, and is hence omitted.
Item 4: Symmetric Lax Monoidality With Respect to Products I
Naturality for the morphism $\mathcal{P}^{\times }_{*|X,Y}$ is the statement that, given maps of sets $f\colon X\to X'$ and $g\colon Y\to Y'$, the diagram

commutes, which is clear, as it acts on elements as

where we are using Item 8 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of $\mathcal{P}_{*}$ as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.

Item 5: Symmetric Lax Monoidality With Respect to Products II
The proof is similar to Item 4, and is hence omitted.
Item 6: Symmetric Lax Monoidality With Respect to Products III
The proof is similar to Item 4, and is hence omitted.

Let $X$ be a set.

  1. Powersets as Sets of Functions I. The assignment $U\mapsto \chi _{U}$ defines a bijection
    \[ \chi _{\webleft (-\webright )} \colon \mathcal{P}\webleft (X\webright ) \xrightarrow {\cong }\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ), \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  2. Powersets as Sets of Functions II. The bijection
    \[ \mathcal{P}\webleft (X\webright )\cong \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \]

    of Item 1 is natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, refining to a natural isomorphism of functors

    \[ \mathcal{P}^{-1}\cong \mathsf{Sets}\webleft (-,\{ \mathsf{t},\mathsf{f}\} \webright ). \]
  3. Powersets as Sets of Relations. We have bijections
    \begin{align*} \mathcal{P}\webleft (X\webright ) & \cong \mathrm{Rel}\webleft (\text{pt},X\webright ),\\ \mathcal{P}\webleft (X\webright ) & \cong \mathrm{Rel}\webleft (X,\text{pt}\webright ), \end{align*}

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

Item 1: Powersets as Sets of Functions I
Indeed, the inverse of $\chi _{\webleft (-\webright )}$ is given by sending a function $f\colon X\to \{ \mathsf{t},\mathsf{f}\} $ to the subset $U_{f}$ of $\mathcal{P}\webleft (X\webright )$ defined by
\[ U_{f}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ f\webleft (x\webright )=\mathsf{true}\webright\} , \]

i.e. by $U_{f}=f^{-1}\webleft (\mathsf{true}\webright )$. That $\chi _{\webleft (-\webright )}$ and $f\mapsto U_{f}$ are inverses is then straightforward to check.

Item 2: Powersets as Sets of Functions II
We need to check that, given a function $f\colon X\to Y$, the diagram

commutes, i.e. that for each $V\in \mathcal{P}\webleft (Y\webright )$, we have

\[ \chi _{V}\circ f=\chi _{f^{-1}\webleft (V\webright )}. \]

And indeed, we have

\begin{align*} \webleft [\chi _{V}\circ f\webright ]\webleft (v\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{V}\webleft (f\webleft (v\webright )\webright )\\ & = \begin{cases} \mathsf{true}& \text{if $f\webleft (v\webright )\in V$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & = \begin{cases} \mathsf{true}& \text{if $v\in f^{-1}\webleft (V\webright )$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{f^{-1}\webleft (V\webright )}\webleft (v\webright )\end{align*}

for each $v\in V$.

Item 3: Powersets as Sets of Relations
Indeed, we have
\begin{align*} \mathrm{Rel}\webleft (\text{pt},X\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (\text{pt}\times X\webright )\\ & \cong \mathcal{P}\webleft (X\webright ) \end{align*}

and

\begin{align*} \mathrm{Rel}\webleft (X,\text{pt}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (X\times \text{pt}\webright )\\ & \cong \mathcal{P}\webleft (X\webright ), \end{align*}

where we have used Item 4 of Proposition 2.1.3.1.2.

The bijection

\[ \mathcal{P}\webleft (X\webright )\cong \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \]

of Item 1 of Proposition 2.4.3.1.6, which

  • Takes a subset $U\hookrightarrow X$ of $X$ and straightens it to a function $\chi _{U}\colon X\to \{ \mathsf{true},\mathsf{false}\} $;
  • Takes a function $f\colon X\to \{ \mathsf{true},\mathsf{false}\} $ and unstraightens it to a subset $f^{-1}\webleft (\mathsf{true}\webright )\hookrightarrow X$ of $X$;
may be viewed as the $\webleft (-1\webright )$-categorical version of the un/straightening isomorphism for indexed and fibred sets

\[ \underbrace{\mathsf{FibSets}\webleft (X\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Sets}_{/X}}\cong \underbrace{\mathsf{ISets}\webleft (X\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Fun}\webleft (X_{\mathsf{disc}},\mathsf{Sets}\webright )} \]

of , where we view:

  • Subsets $U\hookrightarrow X$ as analogous to $X$-fibred sets $\phi _{X}\colon A\to X$.
  • Functions $f\colon X\to \{ \mathsf{t},\mathsf{f}\} $ as analogous to $X$-indexed sets $A\colon X_{\mathsf{disc}}\to \mathsf{Sets}$.

Let $X$ be a set.

  1. Universal Property. The pair $\webleft (\mathcal{P}\webleft (X\webright ),\chi _{\webleft (-\webright )}\webright )$ consisting of
    • The powerset $\mathcal{P}\webleft (X\webright )$ of $X$;
    • The characteristic embedding $\chi _{\webleft (-\webright )}\colon X\hookrightarrow \mathcal{P}\webleft (X\webright )$ of $X$ into $\mathcal{P}\webleft (X\webright )$;
    satisfies the following universal property:

    • Given another pair $\webleft (Y,f\webright )$ consisting of
      • A cocomplete poset $\webleft (Y,\preceq \webright )$;
      • A function $f\colon X\to Y$;
      there exists a unique cocontinuous morphism of posets

      \[ \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\overset {\exists !}{\to }\webleft (Y,\preceq \webright ) \]

      making the diagram

      commute.

  2. Adjointness. We have an adjunction[3]
    witnessed by a bijection
    \[ \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \cong \mathsf{Sets}\webleft (X,Y\webright ), \]

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,\preceq \webright )\in \text{Obj}\webleft (\mathsf{Pos}^{\mathsf{cocomp.}}\webright )$, where the maps witnessing this bijection are given by

    • The map

      \[ \chi ^{*}_{X} \colon \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \to \mathsf{Sets}\webleft (X,Y\webright ) \]

      defined by

      \[ \chi ^{*}_{X}\webleft (f\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\circ \chi _{X}, \]

      i.e. by sending a cocontinuous morphism of posets $f\colon \mathcal{P}\webleft (X\webright )\to Y$ to the composition

      \[ X \overset {\chi _{X}}{\hookrightarrow } \mathcal{P}\webleft (X\webright ) \overset {f}{\to } Y. \]

    • The map

      \[ \text{Lan}_{\chi _{X}} \colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \]

      is given by sending a function $f\colon X\to Y$ to its left Kan extension along $\chi _{X}$,

      Moreover, $\text{Lan}_{\chi _{X}}\webleft (f\webright )$ can be explicitly computed by

      $\displaystyle \webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright ) \cong \int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )$

      $\displaystyle \phantom{\webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright )} \cong \rlap {\int ^{x\in X}\chi _{U}\webleft (x\webright )\odot f\webleft (x\webright )}\phantom{\int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )}$

      (by Proposition 2.4.2.1.1)

      $\displaystyle \phantom{\webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright )} \cong \rlap {\bigvee _{x\in X}\webleft (\chi _{U}\webleft (x\webright )\odot f\webleft (x\webright )\webright )}\phantom{\int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )}$

      for each $U\in \mathcal{P}\webleft (X\webright )$, where:

      • $\bigvee $ is the join in $\webleft (Y,\preceq \webright )$.
      • We have

        \begin{align*} \mathsf{true}\odot f\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright ),\\ \mathsf{false}\odot f\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\varnothing _{Y}, \end{align*}

        where $\varnothing _{Y}$ is the minimal element of $\webleft (Y,\preceq \webright )$.

Item 1: Universal Property
This is a rephrasing of Item 2.
Item 2: Adjointness
We claim we have adjunction $\mathcal{P}\dashv {\text{忘}}$, witnessed by a bijection

\[ \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \cong \mathsf{Sets}\webleft (X,Y\webright ), \]

natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,\preceq \webright )\in \text{Obj}\webleft (\mathsf{Pos}^{\mathsf{cocomp.}}\webright )$.

  • Map I. We define a map

    \[ \Phi _{X,Y}\colon \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \to \mathsf{Sets}\webleft (X,Y\webright ) \]

    as in the statement, by

    \[ \Phi _{X,Y}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\circ \chi _{X} \]

    for each $f\in \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright )$.

  • Map II. We define a map

    \[ \Psi _{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright )\to \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \]

    as in the statement, by

    for each $f\in \mathsf{Sets}\webleft (X,Y\webright )$.
  • Invertibility I. We claim that

    \[ \Psi _{X,Y}\circ \Phi _{X,Y}=\text{id}_{\mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright )}. \]

    Indeed, given a cocontinuous morphism of posets

    \[ \xi \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (Y,\preceq \webright ), \]

    we have

    \begin{align*} \webleft [\Psi _{X,Y}\circ \Phi _{X,Y}\webright ]\webleft (\xi \webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}\webleft (\Phi _{X,Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}\webleft (\xi \circ \chi _{X}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Lan}_{\chi _{X}}\webleft (\xi \circ \chi _{X}\webright )\\ & \cong \bigvee _{x\in X}\chi _{\webleft (-\webright )}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{clm}}}{=}}}\xi ,\end{align*}

    where indeed

    \begin{align*} \webleft[\bigvee _{x\in X}\chi _{\webleft (-\webright )}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigvee _{x\in X}\chi _{U}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\\ & = \webleft (\bigvee _{x\in U}\chi _{U}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright )\vee \webleft (\bigvee _{x\in X\setminus U}\chi _{U}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright )\\ & = \webleft (\bigvee _{x\in U}\xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright )\vee \webleft (\bigvee _{x\in X\setminus U}\varnothing _{Y}\webright )\\ & = \bigvee _{x\in U}\xi \webleft (\chi _{X}\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}\xi \webleft (\bigvee _{x\in U}\chi _{X}\webleft (x\webright )\webright )\\ & = \xi \webleft (U\webright )\end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$, where we have used that $\xi $ is cocontinuous for the equality $\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}$.
  • Invertibility II. We claim that

    \[ \Phi _{X,Y}\circ \Psi _{X,Y}=\text{id}_{\mathsf{Sets}\webleft (X,Y\webright )}. \]

    Indeed, given a function $f\colon X\to Y$, we have

    \begin{align*} \webleft [\Phi _{X,Y}\circ \Psi _{X,Y}\webright ]\webleft (f\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\Psi _{X,Y}\webleft (f\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Lan}_{\chi _{X}}\webleft (f\webright )\circ \chi _{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{clm}}}{=}}}f,\end{align*}

    where indeed

    \begin{align*} \webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\circ \chi _{X}\webright ]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigvee _{y\in X}\chi _{\webleft\{ x\webright\} }\webleft (y\webright )\odot f\webleft (y\webright )\\ & = \webleft (\chi _{\webleft\{ x\webright\} }\webleft (x\webright )\odot f\webleft (x\webright )\webright )\vee \webleft (\bigvee _{y\in X\setminus \webleft\{ x\webright\} }\chi _{\webleft\{ x\webright\} }\webleft (y\webright )\odot f\webleft (y\webright )\webright )\\ & = f\webleft (x\webright )\vee \webleft (\bigvee _{y\in X\setminus \webleft\{ x\webright\} }\varnothing _{Y}\webright )\\ & = f\webleft (x\webright )\vee \varnothing _{Y}\\ & = f\webleft (x\webright )\end{align*}

    for each $x\in X$.

  • Naturality for $\Phi $, Part I. We need to show that, given a function $f\colon X\to X'$, the diagram

    commutes. Indeed, given a cocontinuous morphism of posets

    \[ \xi \colon \webleft (\mathcal{P}\webleft (X'\webright ),\subset \webright )\to \webleft (Y,\preceq \webright ), \]

    we have

    \begin{align*} \webleft [\Phi _{X,Y}\circ \mathcal{P}_{*}\webleft (f\webright )^{*}\webright ]\webleft (\xi \webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\mathcal{P}_{*}\webleft (f\webright )^{*}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\xi \circ f_{*}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\xi \circ f_{*}\webright )\circ \chi _{X}\\ & = \xi \circ \webleft (f_{*}\circ \chi _{X}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}\xi \circ \webleft (\chi _{X'}\circ f\webright )\\ & = \webleft (\xi \circ \chi _{X'}\webright )\circ f\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X',Y}\webleft (\xi \webright )\circ f\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{*}\webleft (\Phi _{X',Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f^{*}\circ \Phi _{X',Y}\webright ]\webleft (\xi \webright ), \end{align*}

    where we have used Item 9 of Proposition 2.4.1.1.3 for the equality $\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}$ above.

  • Naturality for $\Phi $, Part II. We need to show that, given a cocontinuous morphism of posets

    \[ g\colon \webleft (Y,\preceq _{Y}\webright )\to \webleft (Y',\preceq _{Y'}\webright ), \]

    the diagram

    commutes. Indeed, given a cocontinuous morphism of posets

    \[ \xi \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (Y,\preceq \webright ), \]

    we have

    \begin{align*} \webleft [\Phi _{X,Y'}\circ g_{*}\webright ]\webleft (\xi \webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y'}\webleft (g_{*}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y'}\webleft (g\circ \xi \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (g\circ \xi \webright )\circ \chi _{X}\\ & = g\circ \webleft (\xi \circ \chi _{X}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ \webleft (\Phi _{X,Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g_{*}\webleft (\Phi _{X,Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [g_{*}\circ \Phi _{X,Y}\webright ]\webleft (\xi \webright ). \end{align*}

  • Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 8: Categories, Item 2 of Proposition 8.8.6.1.2 that $\Psi $ is also natural in each argument.
This finishes the proof.


Footnotes

[1] This parallel is based on the following comparison:
  • A category is enriched over the category
    \[ \mathsf{Sets}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{0} \]
    of sets (i.e. “$0$-categories”), with presheaves taking values on it.
  • A set is enriched over the set
    \[ \{ \mathsf{t},\mathsf{f}\} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{-1} \]
    of classical truth values (i.e. “$\webleft (-1\webright )$-categories”), with characteristic functions taking values on it.
[2] For intuition regarding the expression defining $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )$, see Remark 2.3.9.1.3.
[3] In this sense, $\mathcal{P}\webleft (A\webright )$ is the free cocompletion of $A$. (Note that, despite its name, however, this is not an idempotent operation, as we have $\mathcal{P}\webleft (\mathcal{P}\webleft (A\webright )\webright )\neq \mathcal{P}\webleft (A\webright )$.)

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: