Let $X$ be a set.

  1. Functoriality I. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}_{*}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}_{*}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}_{*|A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ) \]

      of $\mathcal{P}_{*}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{*}\webleft (f\webright )\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

      defined by

      \[ \mathcal{P}_{*}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}, \]

      as in Definition 2.4.4.1.1.

  2. Functoriality II. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}^{-1}\colon \mathsf{Sets}^{\mathsf{op}}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}^{-1}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}^{-1}_{A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (B\webright ),\mathcal{P}\webleft (A\webright )\webright ) \]

      of $\mathcal{P}^{-1}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}^{-1}\webleft (f\webright )\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]

      defined by

      \[ \mathcal{P}^{-1}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}, \]

      as in Definition 2.4.5.1.1.

  3. Functoriality III. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor
    \[ \mathcal{P}_{!}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}_{!}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]

    • Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}_{!|A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ) \]

      of $\mathcal{P}_{!}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{!}\webleft (f\webright )\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

      defined by

      \[ \mathcal{P}_{!}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}, \]

      as in Definition 2.4.6.1.1.

  4. Adjointness I. We have an adjunction
    witnessed by a bijection
    \[ \underbrace{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (A\webright ),B\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mkern 5mu\mathsf{Sets}\webleft (B,\mathcal{P}\webleft (A\webright )\webright )} \cong \mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright ), \]

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $B\in \text{Obj}\webleft (\mathsf{Sets}^{\mathsf{op}}\webright )$.

  5. Adjointness II. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright ) \cong \mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright ) \]

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $B\in \text{Obj}\webleft (\mathrm{Rel}\webright )$, where $\text{Gr}$ is the graph functor of Chapter 6: Constructions With Relations, Item 1 of Proposition 6.3.1.1.2 and $\mathcal{P}_{*}$ is the functor of Chapter 6: Constructions With Relations, Proposition 6.4.5.1.1.

Item 1: Functoriality I
This follows from Item 3 and Item 4 of Proposition 2.4.4.1.5.
Item 2: Functoriality II
This follows Item 3 and Item 4 of Proposition 2.4.5.1.4.
Item 3: Functoriality III
This follows Item 3 and Item 4 of Proposition 2.4.6.1.7.
Item 4: Adjointness I
We have

$\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (A\webright ),B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\rlap {\mathsf{Sets}\webleft (B,\mathcal{P}\webleft (A\webright )\webright )}\phantom{\mkern 400mu}$

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )}\cong \rlap {\mathsf{Sets}\webleft (B,\mathsf{Sets}\webleft (A,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 400mu}$

(by Item 1 of Proposition 2.4.3.1.6)

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )}\phantom{\mkern 400mu}$

(by Item 2 of Proposition 2.1.3.1.2)

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 400mu}$

(by Item 2 of Proposition 2.1.3.1.2)

$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )}\phantom{\mkern 400mu}$

(by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in $A$ and $B$ (where we use Item 2 of Proposition 2.4.3.1.6 here).

Item 5: Adjointness II
We have

$\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\rlap {\mathcal{P}\webleft (A\times B\webright )}\phantom{\mkern 375mu}$

$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )}\phantom{\mkern 375mu}$

(by Item 1 of Proposition 2.4.3.1.6)

$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 375mu}$

(by Item 2 of Proposition 2.1.3.1.2)

$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )}\phantom{\mkern 375mu}$

(by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in $A$ (where we use Item 2 of Proposition 2.4.3.1.6 here). Explicitly, this isomorphism is given by sending a relation $R\colon \text{Gr}\webleft (A\webright )\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ to the map $R^{\dagger }\colon A\to \mathcal{P}\webleft (B\webright )$ sending $a$ to the subset $R\webleft (a\webright )$ of $B$, as in Chapter 5: Relations, Remark 5.1.1.1.4.

Naturality in $B$ is then the statement that given a relation $R\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B'$, the diagram

commutes, which follows from Chapter 6: Constructions With Relations, Remark 6.4.1.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: