Let $X$ be a set.

  1. Universal Property. The pair $\webleft (\mathcal{P}\webleft (X\webright ),\chi _{\webleft (-\webright )}\webright )$ consisting of
    • The powerset $\mathcal{P}\webleft (X\webright )$ of $X$;
    • The characteristic embedding $\chi _{\webleft (-\webright )}\colon X\hookrightarrow \mathcal{P}\webleft (X\webright )$ of $X$ into $\mathcal{P}\webleft (X\webright )$;
    satisfies the following universal property:

    • Given another pair $\webleft (Y,f\webright )$ consisting of
      • A cocomplete poset $\webleft (Y,\preceq \webright )$;
      • A function $f\colon X\to Y$;
      there exists a unique cocontinuous morphism of posets

      \[ \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\overset {\exists !}{\to }\webleft (Y,\preceq \webright ) \]

      making the diagram

      commute.

  2. Adjointness. We have an adjunction[1]
    witnessed by a bijection
    \[ \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \cong \mathsf{Sets}\webleft (X,Y\webright ), \]

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,\preceq \webright )\in \text{Obj}\webleft (\mathsf{Pos}^{\mathsf{cocomp.}}\webright )$, where the maps witnessing this bijection are given by

    • The map

      \[ \chi ^{*}_{X} \colon \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \to \mathsf{Sets}\webleft (X,Y\webright ) \]

      defined by

      \[ \chi ^{*}_{X}\webleft (f\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\circ \chi _{X}, \]

      i.e. by sending a cocontinuous morphism of posets $f\colon \mathcal{P}\webleft (X\webright )\to Y$ to the composition

      \[ X \overset {\chi _{X}}{\hookrightarrow } \mathcal{P}\webleft (X\webright ) \overset {f}{\to } Y. \]

    • The map

      \[ \text{Lan}_{\chi _{X}} \colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \]

      is given by sending a function $f\colon X\to Y$ to its left Kan extension along $\chi _{X}$,

      Moreover, $\text{Lan}_{\chi _{X}}\webleft (f\webright )$ can be explicitly computed by

      $\displaystyle \webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright ) \cong \int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )$

      $\displaystyle \phantom{\webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright )} \cong \rlap {\int ^{x\in X}\chi _{U}\webleft (x\webright )\odot f\webleft (x\webright )}\phantom{\int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )}$

      (by Proposition 2.4.2.1.1)

      $\displaystyle \phantom{\webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright )} \cong \rlap {\bigvee _{x\in X}\webleft (\chi _{U}\webleft (x\webright )\odot f\webleft (x\webright )\webright )}\phantom{\int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )}$

      for each $U\in \mathcal{P}\webleft (X\webright )$, where:

      • $\bigvee $ is the join in $\webleft (Y,\preceq \webright )$.
      • We have

        \begin{align*} \mathsf{true}\odot f\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright ),\\ \mathsf{false}\odot f\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\varnothing _{Y}, \end{align*}

        where $\varnothing _{Y}$ is the minimal element of $\webleft (Y,\preceq \webright )$.

Item 1: Universal Property
This is a rephrasing of Item 2.
Item 2: Adjointness
We claim we have adjunction $\mathcal{P}\dashv {\text{忘}}$, witnessed by a bijection

\[ \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \cong \mathsf{Sets}\webleft (X,Y\webright ), \]

natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,\preceq \webright )\in \text{Obj}\webleft (\mathsf{Pos}^{\mathsf{cocomp.}}\webright )$.

  • Map I. We define a map

    \[ \Phi _{X,Y}\colon \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \to \mathsf{Sets}\webleft (X,Y\webright ) \]

    as in the statement, by

    \[ \Phi _{X,Y}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\circ \chi _{X} \]

    for each $f\in \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright )$.

  • Map II. We define a map

    \[ \Psi _{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright )\to \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \]

    as in the statement, by

    for each $f\in \mathsf{Sets}\webleft (X,Y\webright )$.
  • Invertibility I. We claim that

    \[ \Psi _{X,Y}\circ \Phi _{X,Y}=\text{id}_{\mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright )}. \]

    Indeed, given a cocontinuous morphism of posets

    \[ \xi \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (Y,\preceq \webright ), \]

    we have

    \begin{align*} \webleft [\Psi _{X,Y}\circ \Phi _{X,Y}\webright ]\webleft (\xi \webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}\webleft (\Phi _{X,Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}\webleft (\xi \circ \chi _{X}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Lan}_{\chi _{X}}\webleft (\xi \circ \chi _{X}\webright )\\ & \cong \bigvee _{x\in X}\chi _{\webleft (-\webright )}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{clm}}}{=}}}\xi ,\end{align*}

    where indeed

    \begin{align*} \webleft[\bigvee _{x\in X}\chi _{\webleft (-\webright )}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigvee _{x\in X}\chi _{U}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\\ & = \webleft (\bigvee _{x\in U}\chi _{U}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright )\vee \webleft (\bigvee _{x\in X\setminus U}\chi _{U}\webleft (x\webright )\odot \xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright )\\ & = \webleft (\bigvee _{x\in U}\xi \webleft (\chi _{X}\webleft (x\webright )\webright )\webright )\vee \webleft (\bigvee _{x\in X\setminus U}\varnothing _{Y}\webright )\\ & = \bigvee _{x\in U}\xi \webleft (\chi _{X}\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}\xi \webleft (\bigvee _{x\in U}\chi _{X}\webleft (x\webright )\webright )\\ & = \xi \webleft (U\webright )\end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$, where we have used that $\xi $ is cocontinuous for the equality $\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}$.
  • Invertibility II. We claim that

    \[ \Phi _{X,Y}\circ \Psi _{X,Y}=\text{id}_{\mathsf{Sets}\webleft (X,Y\webright )}. \]

    Indeed, given a function $f\colon X\to Y$, we have

    \begin{align*} \webleft [\Phi _{X,Y}\circ \Psi _{X,Y}\webright ]\webleft (f\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\Psi _{X,Y}\webleft (f\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Lan}_{\chi _{X}}\webleft (f\webright )\circ \chi _{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{clm}}}{=}}}f,\end{align*}

    where indeed

    \begin{align*} \webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\circ \chi _{X}\webright ]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigvee _{y\in X}\chi _{\webleft\{ x\webright\} }\webleft (y\webright )\odot f\webleft (y\webright )\\ & = \webleft (\chi _{\webleft\{ x\webright\} }\webleft (x\webright )\odot f\webleft (x\webright )\webright )\vee \webleft (\bigvee _{y\in X\setminus \webleft\{ x\webright\} }\chi _{\webleft\{ x\webright\} }\webleft (y\webright )\odot f\webleft (y\webright )\webright )\\ & = f\webleft (x\webright )\vee \webleft (\bigvee _{y\in X\setminus \webleft\{ x\webright\} }\varnothing _{Y}\webright )\\ & = f\webleft (x\webright )\vee \varnothing _{Y}\\ & = f\webleft (x\webright )\end{align*}

    for each $x\in X$.

  • Naturality for $\Phi $, Part I. We need to show that, given a function $f\colon X\to X'$, the diagram

    commutes. Indeed, given a cocontinuous morphism of posets

    \[ \xi \colon \webleft (\mathcal{P}\webleft (X'\webright ),\subset \webright )\to \webleft (Y,\preceq \webright ), \]

    we have

    \begin{align*} \webleft [\Phi _{X,Y}\circ \mathcal{P}_{*}\webleft (f\webright )^{*}\webright ]\webleft (\xi \webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\mathcal{P}_{*}\webleft (f\webright )^{*}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}\webleft (\xi \circ f_{*}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\xi \circ f_{*}\webright )\circ \chi _{X}\\ & = \xi \circ \webleft (f_{*}\circ \chi _{X}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}\xi \circ \webleft (\chi _{X'}\circ f\webright )\\ & = \webleft (\xi \circ \chi _{X'}\webright )\circ f\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X',Y}\webleft (\xi \webright )\circ f\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{*}\webleft (\Phi _{X',Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f^{*}\circ \Phi _{X',Y}\webright ]\webleft (\xi \webright ), \end{align*}

    where we have used Item 9 of Proposition 2.4.1.1.3 for the equality $\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle (\dagger )}}{=}}}$ above.

  • Naturality for $\Phi $, Part II. We need to show that, given a cocontinuous morphism of posets

    \[ g\colon \webleft (Y,\preceq _{Y}\webright )\to \webleft (Y',\preceq _{Y'}\webright ), \]

    the diagram

    commutes. Indeed, given a cocontinuous morphism of posets

    \[ \xi \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (Y,\preceq \webright ), \]

    we have

    \begin{align*} \webleft [\Phi _{X,Y'}\circ g_{*}\webright ]\webleft (\xi \webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y'}\webleft (g_{*}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y'}\webleft (g\circ \xi \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (g\circ \xi \webright )\circ \chi _{X}\\ & = g\circ \webleft (\xi \circ \chi _{X}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ \webleft (\Phi _{X,Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g_{*}\webleft (\Phi _{X,Y}\webleft (\xi \webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [g_{*}\circ \Phi _{X,Y}\webright ]\webleft (\xi \webright ). \end{align*}

  • Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 8: Categories, Item 2 of Proposition 8.8.6.1.2 that $\Psi $ is also natural in each argument.
This finishes the proof.


Footnotes

[1] In this sense, $\mathcal{P}\webleft (A\webright )$ is the free cocompletion of $A$. (Note that, despite its name, however, this is not an idempotent operation, as we have $\mathcal{P}\webleft (\mathcal{P}\webleft (A\webright )\webright )\neq \mathcal{P}\webleft (A\webright )$.)

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: