Let $\webleft (X,x_{0}\webright )$ be a pointed set.
-
Completeness. The category $\mathsf{Sets}_{*}$ of pointed sets and morphisms between them is complete, having in particular:
- Products, described as in Definition 4.2.3.1.1.
- Pullbacks, described as in Definition 4.2.4.1.1.
- Equalisers, described as in Definition 4.2.5.1.1.
-
Cocompleteness. The category $\mathsf{Sets}_{*}$ of pointed sets and morphisms between them is cocomplete, having in particular:
- Coproducts, described as in Definition 4.3.3.1.1.
- Pushouts, described as in Definition 4.3.4.1.1;
- Coequalisers, described as in Definition 4.3.5.1.1.
- Failure To Be Cartesian Closed. The category $\mathsf{Sets}_{*}$ is not Cartesian closed.1
-
Morphisms From the Monoidal Unit. We have a bijection of sets2
\[ \mathsf{Sets}_{*}\webleft (S^{0},X\webright ) \cong X, \]
natural in $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, internalising also to an isomorphism of pointed sets
\[ \textbf{Sets}_{*}\webleft (S^{0},X\webright ) \cong \webleft (X,x_{0}\webright ), \]again natural in $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.
-
Relation to Partial Functions. We have an equivalence of categories3
\[ \mathsf{Sets}_{*}\mathrel {\smash {\overset {\scriptscriptstyle \text{eq.}}\cong }}\mathsf{Sets}^{\mathrm{part.}} \]
between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them, where:
-
From Pointed Sets to Sets With Partial Functions. The equivalence
\[ \xi \colon \mathsf{Sets}_{*}\mathbin {\overset {\cong }{\rightarrow }}\mathsf{Sets}^{\mathrm{part.}} \]
sends:
- A pointed set $\webleft (X,x_{0}\webright )$ to $X$.
-
A pointed function
\[ f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ) \]
to the partial function
\[ \xi _{f}\colon X\to Y \]defined on $f^{-1}\webleft (Y\setminus y_{0}\webright )$ and given by
\[ \xi _{f}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright ) \]for each $x\in f^{-1}\webleft (Y\setminus y_{0}\webright )$.
-
From Sets With Partial Functions to Pointed Sets. The equivalence
\[ \xi ^{-1}\colon \mathsf{Sets}^{\mathrm{part.}}\mathbin {\overset {\cong }{\rightarrow }}\mathsf{Sets}_{*} \]
sends:
- A set $X$ is to the pointed set $\webleft (X,\star \webright )$ with $\star $ an element that is not in $X$.
-
A partial function
\[ f\colon X\to Y \]
defined on $U\subset X$ to the pointed function
\[ \xi ^{-1}_{f}\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ) \]defined by
\[ \xi _{f}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} f\webleft (x\webright ) & \text{if $x\in U$,}\\ y_{0} & \text{otherwise.} \end{cases} \]for each $x\in X$.
-
From Pointed Sets to Sets With Partial Functions. The equivalence
defined on objects by sending a pointed set to its underlying set is corepresentable by $S^{0}$.