3.3.4 Pushouts

Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets and let $f\colon \webleft (Z,z_{0}\webright )\to \webleft (X,x_{0}\webright )$ and $g\colon \webleft (Z,z_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be morphisms of pointed sets.

The pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pair consisting of:

  • The Colimit. The pointed set $\webleft (X\coprod _{f,Z,g}Y,p_{0}\webright )$, where:
    • The set $X\coprod _{f,Z,g}Y$ is the pushout (of unpointed sets) of $X$ and $Y$ over $Z$ with respect to $f$ and $g$;
    • We have $p_{0}=\webleft [x_{0}\webright ]=\webleft [y_{0}\webright ]$.
  • The Cocone. The morphisms of pointed sets

    \begin{align*} \mathrm{inj}_{1} & \colon \webleft (X,x_{0}\webright )\to \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright ),\\ \mathrm{inj}_{2} & \colon \webleft (Y,y_{0}\webright )\to \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright ) \end{align*}

    given by

    \begin{align*} \mathrm{inj}_{1}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (0,x\webright )\webright ]\\ \mathrm{inj}_{2}\webleft (y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (1,y\webright )\webright ]\end{align*}

    for each $x\in X$ and each $y\in Y$.

Firstly, we note that indeed $\webleft [x_{0}\webright ]=\webleft [y_{0}\webright ]$, as we have

\begin{align*} x_{0} & = f\webleft (z_{0}\webright ),\\ y_{0} & = g\webleft (z_{0}\webright ) \end{align*}

since $f$ and $g$ are morphisms of pointed sets, with the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ then identifying $x_{0}=f\webleft (z_{0}\webright )\sim g\webleft (z_{0}\webright )=y_{0}$.

We now claim that $\webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )$ is the categorical pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant pushout diagram commutes, i.e. that we have

Indeed, given $z\in Z$, we have

\begin{align*} \webleft [\mathrm{inj}_{1}\circ f\webright ]\webleft (z\webright ) & = \mathrm{inj}_{1}\webleft (f\webleft (z\webright )\webright )\\ & = \webleft [\webleft (0,f\webleft (z\webright )\webright )\webright ]\\ & = \webleft [\webleft (1,g\webleft (z\webright )\webright )\webright ]\\ & = \mathrm{inj}_{2}\webleft (g\webleft (z\webright )\webright )\\ & = \webleft [\mathrm{inj}_{2}\circ g\webright ]\webleft (z\webright ),\end{align*}

where $\webleft [\webleft (0,f\webleft (z\webright )\webright )\webright ]=\webleft [\webleft (1,g\webleft (z\webright )\webright )\webright ]$ by the definition of the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ (the coproduct of unpointed sets of $X$ and $Y$). Next, we prove that $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

\[ \phi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\to \webleft (P,*\webright ) \]

making the diagram

commute, being uniquely determined by the conditions

\begin{align*} \phi \circ \mathrm{inj}_{1} & = \iota _{1},\\ \phi \circ \mathrm{inj}_{2} & = \iota _{2}\end{align*}

via

\[ \phi \webleft (p\webright )=\begin{cases} \iota _{1}\webleft (x\webright ) & \text{if $x=\webleft [\webleft (0,x\webright )\webright ]$,}\\ \iota _{2}\webleft (y\webright ) & \text{if $x=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]

for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, where the well-definedness of $\phi $ is proven in the same way as in the proof of Chapter 2: Constructions With Sets, Definition 2.2.4.1.1. Finally, we show that $\phi $ is indeed a morphism of pointed sets, as we have

\begin{align*} \phi \webleft (p_{0}\webright ) & = \phi \webleft (\webleft [\webleft (0,x_{0}\webright )\webright ]\webright )\\ & = \iota _{1}\webleft (x_{0}\webright )\\ & = *, \end{align*}

or alternatively

\begin{align*} \phi \webleft (p_{0}\webright ) & = \phi \webleft (\webleft [\webleft (1,y_{0}\webright )\webright ]\webright )\\ & = \iota _{2}\webleft (y_{0}\webright )\\ & = *, \end{align*}

where we use that $\iota _{1}$ (resp. $\iota _{2}$) is a morphism of pointed sets.

Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, $\webleft (Z,z_{0}\webright )$, and $\webleft (A,a_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\mathbin {\textstyle \coprod _{f,Z,g}}Y$ defines a functor
    \[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}_{*}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets

    \[ \xi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\overset {\exists !}{\to }\webleft (X'\mathbin {\textstyle \coprod _{Z'}}Y',p'_{0}\webright ) \]

    given by

    \[ \xi \webleft (p\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi \webleft (x\webright ) & \text{if $p=\webleft [\webleft (0,x\webright )\webright ]$},\\ \psi \webleft (y\webright ) & \text{if $p=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]

    for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, which is the unique morphism of pointed sets making the diagram

    commute.

  2. Associativity. Given a diagram

    in $\mathsf{Sets}$, we have isomorphisms of pointed sets

    \[ \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{V}}Z\cong \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{Y}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ) \cong X\mathbin {\textstyle \coprod _{W}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ), \]

    where these pullbacks are built as in the diagrams

  3. Unitality. We have isomorphisms of sets
  4. Commutativity. We have an isomorphism of sets
  5. Interaction With Coproducts. We have
  6. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\mathbin {\textstyle \coprod _{X}},\webleft (X,x_{0}\webright )\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of co/limits, of , with the explicit expression for $\xi $ following from the commutativity of the cube pushout diagram.
Item 2: Associativity
This follows from Chapter 2: Constructions With Sets, Item 2 of Proposition 2.2.4.1.4.
Item 3: Unitality
This follows from Chapter 2: Constructions With Sets, Item 3 of Proposition 2.2.4.1.4.
Item 4: Commutativity
This follows from Chapter 2: Constructions With Sets, Item 4 of Proposition 2.2.4.1.4.
Item 5: Interaction With Coproducts
Clear.
Item 6: Symmetric Monoidality
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: