Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, $\webleft (Z,z_{0}\webright )$, and $\webleft (A,a_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\mathbin {\textstyle \coprod _{f,Z,g}}Y$ defines a functor
    \[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}_{*}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets

    \[ \xi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\overset {\exists !}{\to }\webleft (X'\mathbin {\textstyle \coprod _{Z'}}Y',p'_{0}\webright ) \]

    given by

    \[ \xi \webleft (p\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi \webleft (x\webright ) & \text{if $p=\webleft [\webleft (0,x\webright )\webright ]$},\\ \psi \webleft (y\webright ) & \text{if $p=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]

    for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, which is the unique morphism of pointed sets making the diagram

    commute.

  2. Associativity. Given a diagram

    in $\mathsf{Sets}$, we have isomorphisms of pointed sets

    \[ \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{V}}Z\cong \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{Y}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ) \cong X\mathbin {\textstyle \coprod _{W}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ), \]

    where these pullbacks are built as in the diagrams

  3. Unitality. We have isomorphisms of sets
  4. Commutativity. We have an isomorphism of sets
  5. Interaction With Coproducts. We have
  6. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\mathbin {\textstyle \coprod _{X}},\webleft (X,x_{0}\webright )\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of co/limits, of , with the explicit expression for $\xi $ following from the commutativity of the cube pushout diagram.
Item 2: Associativity
This follows from Chapter 2: Constructions With Sets, Item 2 of Proposition 2.2.4.1.4.
Item 3: Unitality
This follows from Chapter 2: Constructions With Sets, Item 3 of Proposition 2.2.4.1.4.
Item 4: Commutativity
This follows from Chapter 2: Constructions With Sets, Item 4 of Proposition 2.2.4.1.4.
Item 5: Interaction With Coproducts
Clear.
Item 6: Symmetric Monoidality
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: