-
Item (a): Compatibility With Strong Monoidality Constraints: We need to show that the diagram
commutes. Indeed, this diagram acts on elements as
and hence indeed commutes.
-
Item (b): Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 5.5.5.1.1, the inverse of the left unitor of $\mathsf{Sets}_{*}$ with respect to to the smash product of pointed sets at $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ is given by
\[ \lambda ^{\mathsf{Sets}_{*},-1}_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge x \]
for each $x\in X$, so when $X=S^{0}$, we have
\begin{align*} \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\webleft (0\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 0,\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\webleft (1\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 1. \end{align*}
But since $1\wedge 0=0\wedge 0$ and
\begin{align*} \Delta ^{\wedge }_{S^{0}}\webleft (0\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}0\wedge 0,\\ \Delta ^{\wedge }_{S^{0}}\webleft (1\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 1, \end{align*}
it follows that we indeed have $\Delta ^{\wedge }_{S^{0}}=\lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}$.
This finishes the proof.