5.5.8 The Diagonal

The diagonal of the smash product of pointed sets is the natural transformation

whose component

\[ \Delta ^{\wedge }_{X}\colon \webleft (X,x_{0}\webright )\to \webleft (X\wedge X,x_{0}\wedge x_{0}\webright ) \]

at $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ is given by the composition

in $\mathsf{Sets}_{*}$, and thus by

\[ \Delta ^{\wedge }_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x\wedge x \]

for each $x\in X$.

Being a Morphism of Pointed Sets
We have

\[ \Delta ^{\wedge }_{X}\webleft (x_{0}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x_{0}\wedge x_{0}, \]

and thus $\Delta ^{\wedge }_{X}$ is a morphism of pointed sets.

Naturality
We need to show that, given a morphism of pointed sets

\[ f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ), \]

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\Delta ^{\wedge }$ to be natural.

Let $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

  1. Monoidality. The diagonal
    \[ \Delta ^{\wedge }\colon \text{id}_{\mathsf{Sets}_{*}}\Longrightarrow {\wedge }\circ {\Delta ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*}}}, \]

    of the smash product of pointed sets is a monoidal natural transformation:

    1. Compatibility With Strong Monoidality Constraints. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the diagram

      commutes.

    2. Compatibility With Strong Unitality Constraints. The diagrams
      commute, i.e. we have
      \begin{align*} \Delta ^{\wedge }_{S^{0}} & = \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\\ & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}, \end{align*}

      where we recall that the equalities

      \begin{align*} \lambda ^{\mathsf{Sets}_{*}}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*}}_{S^{0}},\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}\end{align*}

      are always true in any monoidal category by , of .

  2. The Diagonal of the Unit. The component
    \[ \Delta ^{\wedge }_{S^{0}} \colon S^{0} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }S^{0}\wedge S^{0} \]

    of $\Delta ^{\wedge }$ at $S^{0}$ is an isomorphism.

Item 1: Monoidality
We claim that $\Delta ^{\wedge }$ is indeed monoidal:
  1. Item (a): Compatibility With Strong Monoidality Constraints: We need to show that the diagram

    commutes. Indeed, this diagram acts on elements as

    and hence indeed commutes.

  2. Item (b): Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 5.5.5.1.1, the inverse of the left unitor of $\mathsf{Sets}_{*}$ with respect to to the smash product of pointed sets at $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ is given by
    \[ \lambda ^{\mathsf{Sets}_{*},-1}_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge x \]

    for each $x\in X$, so when $X=S^{0}$, we have

    \begin{align*} \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\webleft (0\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 0,\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\webleft (1\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 1. \end{align*}

    But since $1\wedge 0=0\wedge 0$ and

    \begin{align*} \Delta ^{\wedge }_{S^{0}}\webleft (0\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}0\wedge 0,\\ \Delta ^{\wedge }_{S^{0}}\webleft (1\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\wedge 1, \end{align*}

    it follows that we indeed have $\Delta ^{\wedge }_{S^{0}}=\lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}$.

This finishes the proof.

Item 2: The Diagonal of the Unit
This follows from Item 1 and the invertibility of the left/right unitor of $\mathsf{Sets}_{*}$ with respect to $\wedge $, proved in the proof of Definition 5.5.5.1.1 for the left unitor or the proof of Definition 5.5.6.1.1 for the right unitor.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: