Let $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.
-
Monoidality. The diagonal
\[ \Delta ^{\wedge }\colon \text{id}_{\mathsf{Sets}_{*}}\Longrightarrow {\wedge }\circ {\Delta ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*}}}, \]
of the smash product of pointed sets is a monoidal natural transformation:
-
Compatibility With Strong Monoidality Constraints. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the diagram
commutes.
-
Compatibility With Strong Unitality Constraints. The diagrams commute, i.e. we have
\begin{align*} \Delta ^{\wedge }_{S^{0}} & = \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\\ & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}, \end{align*}
where we recall that the equalities
\begin{align*} \lambda ^{\mathsf{Sets}_{*}}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*}}_{S^{0}},\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}\end{align*}
-
Compatibility With Strong Monoidality Constraints. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the diagram
-
The Diagonal of the Unit. The component
\[ \Delta ^{\wedge }_{S^{0}} \colon S^{0} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }S^{0}\wedge S^{0} \]
of $\Delta ^{\wedge }$ at $S^{0}$ is an isomorphism.