9.7.4 Pseudomonic Functors

Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

A functor $F\colon \mathcal{C}\to \mathcal{D}$ is pseudomonic if it satisfies the following conditions:

  1. For all diagrams of the form

    if we have

    \[ \text{id}_{F}\mathbin {\star }\alpha =\text{id}_{F}\mathbin {\star }\beta , \]

    then $\alpha =\beta $.

  2. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$ and each natural isomorphism
    there exists a natural isomorphism
    such that we have an equality
    of pasting diagrams, i.e. such that we have
    \[ \beta =\text{id}_{F}\mathbin {\star }\alpha . \]

Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. Characterisations. The following conditions are equivalent:
    1. The functor $F$ is pseudomonic.
    2. The functor $F$ satisfies the following conditions:
      1. The functor $F$ is faithful, i.e. for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
        \[ F_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

        of $F$ at $\webleft (A,B\webright )$ is injective.

      2. For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the restriction
        \[ F^{\textup{iso}}_{A,B} \colon \textup{Iso}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Iso}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

        of the action on morphisms of $F$ at $\webleft (A,B\webright )$ to isomorphisms is surjective.

    3. We have an isocomma square of the form
      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
    4. We have an isocomma square of the form
      in $\mathsf{Cats}_{\mathsf{2}}$ up to equivalence.
    5. For each $\mathcal{X}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition1 functor
      \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

      is pseudomonic.

  2. Conservativity. If $F$ is pseudomonic, then $F$ is conservative.
  3. Essential Injectivity. If $F$ is pseudomonic, then $F$ is essentially injective.


1Asking the precomposition functors

\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

to be pseudomonic leads to pseudoepic functors; see Item (b) of Item 1 of Proposition 9.7.5.1.2.

Item 1: Characterisations
Omitted.
Item 2: Conservativity
Omitted.

Item 3: Essential Injectivity
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: